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Résumé

Ce mémoire d’habilitation à diriger des recherches présente la majeure partie
de mon activité scientifique au cours de ces 7 dernières années, dans le domaine
des calculs de structure électronique des défauts dans les solides.

Les défauts ponctuels (lacunes, interstitiels, impuretés) dans les matériaux
fonctionnels jouent un rôle primordial pour déterminer si ces matériaux vont
effectivement remplir le rôle qu’on leur a assigné ou pas. En effet, la présence
de défauts est inévitable dès que la température s’élève ou que le matériau est
soumis à des sollicitations externes comme l’irradiation dans les réacteurs nu-
cléaires ou les satellites artificiels avec les rayonnements cosmiques. Cependant
dans de nombreux cas, les défauts sont introduits dans le matériau de façon
volontaire afin de contrôler les propriétés de transport électronique, optiques,
ou même magnétiques. On parle alors du dopage des semiconducteurs, tech-
nique qui est à la base des transistors, des diodes ou des cellules photovoltaïques
actuelles. Malheureusement, le dopage présente souvent des particularités inat-
tendues, telles que les asymétries de dopage et l’épinglement du niveau de Fermi,
qui ne peuvent s’expliquer que par des phénomènes complexes mettant en jeu
différents types de défauts ou de complexes de défauts.

Dans ce contexte, les calculs de structure électroniques ab initio constituent
un outil de choix pour compléter les observations expérimentales, pour affiner
la compréhension des phénomènes au niveau atomique, et même pour prédire
les propriétés des défauts. La force des calculs ab initio réside en ce qu’ils
permettent en principe une description sans aucun ajustement spécifique de
n’importe quel système d’électrons et de noyaux. Mais bien qu’il y ait un besoin
fort de simulation numérique dans ce domaine, les calculs ab initio pour les
défauts sont encore en développement à l’heure où ces mots sont écrits. Les
travaux exposés dans ce mémoire résument ma contribution aux développements
méthodologiques dans cette voie. Ces développements ont porté essentiellement
sur deux pistes.

Le premier sujet d’étude est la meilleure compréhension des inévitables ef-
fets de taille finie. En effet, les défauts des semiconducteurs ou isolants sont
généralement présents en concentration infimes (de l’ordre d’un pour un mil-
lion). En revanche, étant donnée la lourdeur des calculs quantiques de structure
électroniques qui croit très rapidement avec le nombre d’électrons, les systèmes
simulés par ordinateur dépassent difficilement les quelques centaines d’atomes à
l’heure actuelle. Ceci conduit à des concentrations de défaut effectives de l’ordre
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du pourcent qui sont bien loin de la limite des défauts dilués de l’expérience.
L’extrapolation des concentrations fortes vers les concentrations faibles est déli-
cate car les défauts des semiconducteurs portent très souvent une charge élec-
trique nette qui induit des interactions entre défauts chargés à longue portée.
La première partie de mon travail expose les techniques disponibles dans ce
domaine et quelques contributions à l’amélioration et à la compréhension des
celles-ci.

Le second domaine de recherche présenté porte sur l’amélioration de la struc-
ture électronique des défauts dans les semiconducteurs et isolants. Les défauts
dans ces matériaux introduisent des niveaux électroniques à l’intérieur de bande
interdite du matériau parfait. Ces niveaux électroniques correspondent aux élec-
trons participant au défaut. Leur fonction d’onde est plus ou moins localisée
autour de la région du défaut et leur remplissage peut varier selon les conditions
thermodynamiques. Ces niveaux à l’intérieur de la bande interdite gouvernent la
modification des propriétés de transport électronique et optique. Malheureuse-
ment les techniques ab initio usuelles dans le cadre de la théorie de la fonc-
tionnelle de la densité (DFT) sont incapables d’obtenir des largeurs correctes
des bandes interdites des semiconducteurs et isolants. C’est pourquoi de nom-
breuses propriétés de défaut ne peuvent être prédites avec certitude avec cette
approche. Cette deuxième partie de mon travail expose et démontre comment
l’introduction de la théorie du problème à N corps dans l’approximation dite
GW permet de résoudre le problème des bandes interdites et permet d’obtenir
ainsi des propriétés des défauts plus fiables.

Bien entendu, le domaine de structure électronique ab initio des défauts
est loin d’être un sujet de recherche épuisé, tant du point de vue des avancées
théoriques, que des avancées expérimentales. L’avènement de calculateurs plus
performants permettra d’utiliser des théories plus précises, de traiter des dé-
fauts plus dilués, et des défauts plus complexes. Nous pouvons aussi anticiper
que dans un futur proche les besoins technologiques vont continuer à alimenter
l’intérêt pour les défauts ponctuels: par exemple, l’informatique quantique se
fonde en partie sur des bits élémentaires constitué de défauts préparés dans des
états de spin bien déterminés; le développement de nouvelles cellules photo-
voltaïques nécessite la caractérisation des défauts qui limitent l’efficacité de la
séparation de charge.
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Summary

This “Habilitation à diriger des Recherches” memoir presents most of my sci-
entific activities during the past 7 years, in the field of electronic structure
calculations of defects in solids.

Point defects (vacancies, interstitials, impurities) in functional materials are
a key parameter to determine if these materials will actually fill the role they
have been assigned or not. Indeed, the presence of defects cannot be avoided
when the temperature is increased or when the material is subjected to external
stresses, such as irradiation in the nuclear reactors and in artificial satellites
with solar radiations. However, in many cases, defects are introduced in the
materials on purpose to tune the electronic transport, optical or even magnetic
properties. This procedure is called the doping of semiconductors, which is the
foundation technique for transistors, diodes, or photovoltaic cells. However,
doping is not always straightforward and unexpected features may occur, such
as doping asymmetry or Fermi level pinning, which can only be explained by
complex phenomena involving different types of defects or complexes of defects.

In this context, the calculations of electronic structure ab initio is an ideal
tool to complement the experimental observations, to gain the understanding
of phenomena at the atomic level, and even to predict the properties of defects.
The power of the ab initio calculations comes from their ability to describe any
system of electrons and nuclei without any specific adjustment. But although
there is a strong need for numerical simulations in this field, the ab initio calcu-
lations for defects are still under development as of today. The work presented
in this memoir summarizes my contributions to methodological developments
on this subject. These developments have followed two main tracks.

The first topic is the better understanding of the unavoidable finite size ef-
fects. Indeed, defects in semiconductors or insulators are generally present in
trace concentration (of the order of one part per million). However, owing to
the heavy burden of the quantum-mechanical electronic structure calculations,
which grow very rapidly with the number of electrons, the present day simula-
tions do not easily exceed a few hundred atoms nowadays. This induces effective
defect concentrations of the order of one percent which are very far from the
diluted defects observed in the experiments. The extrapolation of high con-
centrations to low concentrations is difficult because defects in semiconductors
often bear a net electric charge which induces long-range interactions between
the spuriously interacting charged defects. The first part of my work presents
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the techniques available in this area, improvements in the techniques and some
understanding of these spurious interactions.

The second topic addressed in this memoir focuses on improving the elec-
tronic structure of defects in semiconductors and insulators. Defects in these
materials introduce discrete electronic levels within the band gap of the pristine
bulk material. These electronic levels correspond to the electrons involved in
the defect states. Their wavefunction is more or less localized around the defect
region and the filling of the state may also vary with the thermodynamic condi-
tions (Fermi level). These levels inside the band gap govern the modification of
the properties of electronic and optical transport. Unfortunately the standard
ab initio approaches, in the context of Density Functional Theory (DFT), are
unable to get the correct band gaps of semiconductors and insulators. This
is why many defect properties cannot be predicted with certainty within these
approaches. This second part demonstrates how the introduction of the many-
body perturbation theory in the so-calledGW approximation solves the problem
of band gaps and thus allows one to obtain more reliable defect properties.

Of course, the field of ab initio electronic structure for defects is far from
being a finalized research subject, because of the theoretical advances, as well as
the experimental progresses. The advent of more powerful computers allows the
use of more accurate theories, the calculations of more diluted (more realistic)
defects, and also the calculations of more complex defects. We can also antic-
ipate that in the near future, technological applications will continue to feed
the interest in point defects, e.g. with the field of quantum computing whose
elementary bits are built from well-prepared defects in specific spin states; with
the development of new solar cells that will require the fine characterization of
defects that hinder the efficiency of the charge separation.
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Part I

A short introduction to point
defects in semiconductors
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1 Why should we care about defects?
In crystalline solids, the presence of defects cannot be avoided. Point defects
are disruptions in the perfect ordering of the atoms in a crystal. The defects can
be caused by missing, substituted, or added atoms. Even the purest electronic
grade silicon samples still contain impurities, e.g. other elements than silicon.
Furthermore, the defect concentration is non zero at thermodynamical equilib-
rium because of entropy. Although point defects have a significant cost in terms
of energy, named formation energy, they are ubiquitous in realistic samples.

The most common point defects are vacancies (a lattice site in the crystal
remains empty), self-interstitials (an atom of the crystal lies off the lattice sites)
and impurities. Other defect types are also possible (antisites, clusters etc. . . ).
The presence of defects is often thought as detrimental for the material prop-
erties. But it is not true in general: defects may induce many useful properties
for technological applications.

The semiconductor electronics are entirely based on the tuning of the con-
duction properties of crystals with impurities. This case is referred to as “dop-
ing”. With the introduction of the suitably chosen impurities, it is possible to
transform intrinsic silicon, which is a poor charge conductor, into a reasonable
conductor for holes (p-type doping) or electrons (n-type doping). Sandwiching
the n and p conducting regions is the recipe for the production of semiconduc-
tors transistors, light-emitting diodes, etc. Photovoltaic cells also rely on p and
n layers, which induce a permanent electric field ensuring the charge separation,
once a photon has been absorbed.

Optical properties can also be tuned by defects. Think of the difference be-
tween the colorless alumina (Al2O3), the blue sapphire and red ruby gemstones.
The three crystals share the same corundum matrix, however sapphire contains
traces of iron and titanium and ruby contains impurities of chromium. A tiny
change in the composition can induce magnificent changes in terms of optical
transmission!

The mechanical properties also affected by the defects. The difference be-
tween the ductile iron and the brittle steel is explained by the carbon impurities.

However, the defects are not always desirable. In semiconductor doping,
other impurities or self-defects can compensate the targeted doping. Many wide
band gap semiconductors unfortunately experience a doping asymmetry: while
one doping type is readily obtained, the opposite doping is extremely difficult. In
photovoltaic cells, the defects are the location for the detrimental electron-hole
recombinations, which produce useless photons instead of the desired electric
current.

The characterization of defects is particularly relevant in the harsh environ-
ments encountered in nuclear plants or in satellites subjected to cosmic rays.
When a crystal is subjected to irradiation (fast electrons, ions, or neutrons
etc. . . ), the atoms of the solid are regularly kicked off their perfect lattice site
due to the interaction with the energetic impinging particles. When an atom
is ejected from its site, this induces a defect pair called a Frenkel pair, which
consists of an self-interstitial atom and a vacancy.
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Figure 1: Schematic representation of the formation energy of a silicon va-
cancy VSi in silicon carbide as a function of the silicon chemical potential µSi or
alternatively as a function of the carbon chemical potential µC. The chemical
potentials are bounded by the inequalities of Eq. (12a).

After this short walk through the zoo of the different defect types and their
applications, I hope the interest of point defects for practical applications has
been made clear. The remainder of this introductory chapter is organized as
follows: the next section will introduce the important physical quantities for
the characterization of point defects; the following section will describe in a
few words the most important experimental techniques for measuring defects;
then the final section will introduce the numerical techniques for the computer
simulations of point defects and their limitations. This last section will outline
the motivations for the research works presented in this memoir.

2 Point defect basic properties

2.1 Formation energy and charge transition levels
To characterize a specific defect, the very first question is the probability of oc-
currence of such a defect. This probability (or in other words its concentration)
is a thermodynamical quantity, which depends on several intensive parameters
(temperature, pressure, chemical potentials. . . ). The correct thermodynamical
quantity to obtain the concentration of defects would be then the formation
Gibbs free energy. However, for most applications of ab initio calculations, the
physical description remains at zero temperature with zero pressure. Thus the
central quantity simply becomes the formation energy of a defect Ef . Neglecting
the entropic contributions might pose problems when comparing the calculated
quantities to high-temperature measurements. Obtaining the concentration of
defects under pressure would require to introduce the enthalpy instead.

Let me introduce the expression for the formation energy for the simplest
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case and progressively introduce complexity to finally reach the general case:
an unspecified defect having a net charge in a compound solid. First consider
the formation of a neutral vacancy in an elemental solid, say silicon,

SiN 
 SiN−1 + Si. (1)

The perfect crystal with N silicon atoms is transformed into an defective crystal
with N − 1 atoms and a silicon atom placed in a reservoir. The corresponding
formation energy reads

Ef (VSi) = Etotal(SiN−1) + µSi − Etotal(SiN ), (2)

where µSi is the chemical potential of the silicon atom fixed by a reservoir. In
a pure elemental solid, the chemical potential of the element is imposed by the
stability of the host material:

µSi = µ0
Si =

1

N
Etotal(SiN ). (3)

Finally, Eq. (2) simply reads

Ef (VSi) = Etotal(SiN−1)− N − 1

N
Etotal(SiN ) (4)

and the formation energy is a number, independent from any external parame-
ter.

When turning to a defect, in a compound, the situation becomes slightly
more complex. Consider now a neutral silicon vacancy in silicon carbide to fix
the ideas. The formation reaction is very similar:

SiNCN 
 SiN−1CN + Si (5)

and the formation energy also remains

Ef (VSi) = Etotal(SiN−1CN ) + µSi − Etotal(SiNCN ). (6)

The only change comes from the chemical potential of silicon µSi. Since now
the solid is silicon carbide, this reservoir only imposes the chemical potential of
SiC:

µSiC = µSi + µC = µ0
SiC. (7)

Just the sum of carbon and silicon chemical potentials is fixed to µ0
SiC, not their

individual values. As a consequence, the formation energy is not any more a
single number but it is rather a function of the chemical potentials. However, the
thermodynamical conditions impose a finite range of variation for µSi and µC.
The compound material should indeed be stable against the decomposition into
separated phases. Here we introduce the zero temperature heat of formation,
which reads in the case of silicon carbide:

∆Hf = µ0
SiC − µ0

Si − µ0
C (8)

= Etotal(SiC)− Etotal(Si)− Etotal(C). (9)
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Bulk silicon carbide is stable against phase separation into bulk silicon and bulk
carbon (graphite) at zero temperature, since ∆Hf has a negative value.

The stability of silicon and carbon in SiC imposes the two following inequal-
ities:

µSi < µ0
Si (10a)

µC < µ0
C. (10b)

And as the sum of these two chemical potentials is imposed in Eq. (7), then two
additional inequalities hold

µSi = µ0
SiC − µC > µ0

SiC − µ0
C = µ0

Si + ∆Hf (11a)
µC = µ0

SiC − µSi > µ0
SiC − µ0

Si = µ0
C + ∆Hf . (11b)

Summarizing all these inequalities, µSi is bounded as

µ0
Si + ∆Hf < µSi < µ0

Si (12a)

and µC is bounded in a similar way:

µ0
C + ∆Hf < µC < µ0

C. (12b)

The limit when µSi approaches to µ0
Si is named silicon-rich thermodynamical

conditions. This situation occurs when the silicon atoms are in excess compared
to carbon atoms. The opposite limit when µSi approaches µ0

Si + ∆Hf implies
an excess of carbon atoms: this is the carbon-rich thermodynamical conditions.

The schematic representation of the silicon vacancy formation energy is pro-
vided in Figure 1. The formation energy is obtained from Eq. (6) and the
chemical potentials are bounded with the inequalities of Eq. (12a). The for-
mation energy of a defect is then a function of the chemical potential imposed
by the equilibrium in certain thermodynamical conditions. It is not surprising
that the higher the chemical potential of silicon, the more difficult the creation
of a vacancy. Within silicon rich conditions (µSi = µ0

Si), the silicon element
is abundant and the vacancy formation is limited. At the opposite, in silicon
poor conditions (equal to carbon rich), the silicon element is more rare and the
vacancy concentration increases.

Some time has been spent in explaining in details the chemical potential
dependence. This is useful to introduce the charged defects in equilibrium with
an electron reservoir. Let me exemplify this with the charged silicon vacancy
V+

Si in SiC. The corresponding formation reaction reads

SiNCN 
 Si+N−1CN + Si + e−, (13)

where e− stands for an electron. The formation energy now reads

Ef (V+
Si) = Etotal(SiN−1C+

N ) + µSi + µe − Etotal(SiNCN ). (14)

The chemical potential of the electrons µe is the Fermi level in the host material.
As the chemical potential of the element was bounded by thermodynamical
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Figure 2: The two usual representations of the charged defect stability range
as a function of the Fermi level µe. Upper panel shows the thermodynamically
most stable charge state and the Fermi level for which the stability changes.
Lower panel plots the formation energy as a function of the Fermi level for the
different charge states. The energy of the most stable charge state is plotted
with a thick red line. This representation provides more date than the other
one.

considerations, the chemical potential µe is bounded to the band gap region
of the host in the case of a non-degenerate semiconductor. If the zero of the
Fermi levels is set at the valence band maximum εVBM, then the Fermi level
is to vary between 0 and Eg, the band gap energy. As a consequence, the
formation energy of a charged defect is a function of the Fermi level and it is
generally plotted as a straight line with the slope determined by the number
of electrons added or removed. Note that in principle, the Fermi level of a
material could be calculated: it is not an external parameter. However this
calculation would require to have the database of all the possible defects for all
the possible charge states with the corresponding formation energies and also
the concentration of the impurities with their charge state. Then for sake of
comparison, the formation energies are preferably given in the literature as a
function of the Fermi level.

The general expression of the formation energy of a generic defect X in charge
state q reads

Ef (Xq) = Etotal(Xq)− Etotal(bulk)−
∑
i

niµi + q(εVBM + µe), (15)

where ni counts the number of element i that were inserted ni > 0 or extracted
ni < 0 to form the defect. The charge q counts the number of electrons that
were extracted to form the defect.

With this definition, we are now able to understand all the peculiarities
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Figure 3: The two usual representations of the charged defect stability range
as a function of the Fermi level µe exemplified with a good acceptor.

of charged defects in semiconductors and insulators. By plotting the differ-
ent charge state formation energies in the same graphs, as in the lower panel
of Figure 2, crossing points between formation energy lines may occur. The
meaning of these intersections is clear: it accounts for a change of the thermo-
dynamical most stable charge state. The thermodynamical charge transition
level εth(q + 1/q) is the Fermi level value for which the formation energies of
charge states q and q + 1 match. The equality

Ef (Xq) = Ef (Xq+1) (16)

implies the definition

εth(q + 1/q) = Etotal(Xq)− Etotal(Xq+1)− εVBM. (17)

When one focuses on the electrical properties induced by the charged defect,
another handy representation exists as shown in the upper panel of Figure 2.
This representation highlights the most stable charge state as a function of the
Fermi level. It contains less information compared to the formation energy plot
in the lower panel, however for many applications this is already sufficient. For
instance, it allows one to appraise which defects will contribute to doping with
electrons or holes.

2.2 Acceptors or donors? Shallow or deep?
As the defects in semiconductors and insulators may have a net charge, the
overall charge compensation in a macroscopic sample is ensured either by other
charged defects or by free charge carriers, such as electrons in the conduction
band or holes in the valence band. When a charge transition level from neutral
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to negative exists below the conduction band, then the defect is said to be an
acceptor or to have an acceptor level. Since it can bear a negative charge,
positive holes could be induced to ensure charge compensation. The defect
has then some affinity to “accept” additional valence electrons. When a charge
transition level from neutral to positive exists above the valence band, then the
defect is said to be a donor or to have a donor level. As it may have a positive
charge, conduction electrons may be “donated” by charge compensation. For
instance, the defect represented in Figure 2 is both an acceptor and a donor.

In the semiconductors based electronics and in photovoltaic cells, donor and
acceptor impurities are instrumental to engineer the transport properties of a
semiconductor. To efficiently introduce holes in the valence band, an accep-
tor should have its charge transition level εth(0/−) as close as possible from
the valence band maximum. Figure 3 shows the formation energies and charge
transition levels of such a good acceptor defect. If this accepting defect is pre-
dominant, the Fermi level is to be pinned in between the valence band maximum
and the defect level. As a rule of thumbs, the charge transition level should be
not farther than a few kBT from the valence band maximum to have a significant
probability being charged -1 and therefore to induce conducting holes. Obtain-
ing a effective donor is exactly the reverse situation: the neutral to positive
charge transition level εth(+/0) should lie within a few kBT to the conduction
band minimum. At room temperature, the electrically active defects should be
located within, say, 100 meV from the band edges. These active defects are
called shallow defects; the other ones are categorized as deep. However, to ad-
dress the possibility of carrier doping in a semiconductor, both shallow and deep
defects should be considered. Indeed, the shallow defects are the desired one,
but the deep defects can behave as charged compensators and thus hinder the
doping capabilities.

The depth of the defect level inside the band gap is also in general a measure
of the localization of the defect wavefunctions. The quantum electronic states
introduced by a shallow defect can easily hybridize with the bulk electronic
states. The corresponding wavefunction is in general very delocalized. A simple
hydrogenoid model gives an effective radius a of (Grosso and Pastori Paravicini,
2000):

a = a0
ε∞
m∗

. (18)

For instance, in silicon, the effective is around m∗ = 0.3 for holes and the
dielectric constant is around ε∞ = 12, and finally the effective hydrogenoid
wavefunction radius is a = 18 Å. Of course, this is a very rough estimate which
does not depend on the defect introduced, but it already shows that the numeri-
cal simulation of shallow defect will necessitate large systems with many atoms:
the defect wavefunction needs to fit inside the supercell. A recent work calcu-
lated 64,000 atom supercell to obtain reliable shallow defect properties (Zhang
et al., 2013). At the opposite, the wavefunctions of the states induced by a deep
defect are generally well localized in the vicinity of the defect as exemplified
in Figure 4 for a vacancy in silicon. The silicon vacancy in the neutral charge
states experiences a Jahn-Teller distortion, which means that in the most en-

15



Figure 4: Isosurface of the defect wavefunction in the band gap of silicon (red
surface), when a vacancy is introduced. The first and second nearest neighbors
are drawn, whereas the other atoms of the 216 atom supercell are transparent.

ergetically favorable configuration, the neighboring atoms form new bonds (the
symmetry is then lowered). The isodensity surface indeed shows an accumula-
tion of electrons in between the atoms which had dangling bonds owing to the
vacancy.

2.3 Migration, diffusion, clustering
Besides the tuning of the electronic transport properties in semiconductors, the
point defects also play the prominent role in matter transport in crystals. The
motion of impurities, as well as the motion of the crystal atoms, are mostly
mediated by the defects. Indeed, the direct exchange between two atoms in
neighboring crystalline sites would require to overcome exceedingly high energy
barriers. The jumps of atoms from a crystalline site to another site is much
more favorable when the final site is empty (vacancy mediated diffusion). Al-
ternatively, a lattice atom may also swap with a nearby self-interstitial atom
(self-interstitial mediated diffusion). Furthermore, one can intuitively imagine
that the self-interstitial atoms do not easily fit in the host matrix: they are not
trapped in deep energy wells and therefore are quite mobile in the crystal.

For these reasons, it is important to know the defect properties to character-
ize the matter transport in crystals. And conversely, the measure of the diffusion
coefficient in a crystal gives insight about the defect properties. For a quantita-
tive understanding of self-diffusion, it is time to introduce the driving energies.

16



Figure 5: Schematic representation of the energy landscape in the diffusion
process. The driving energies are shown: the formation energy in the stable
configuration Ef , the migration energy of the defect Em, and the activation
energy of diffusion EA. Note that the activation energy can hence be defined as
the formation energy of the saddle point configuration.

The diffusion is mediated either through vacancies or through self-interstitials.
As for the conductance in parallel electric circuits, the total diffusion coefficient
D is then the sum of the two contributions:

D = DV +DI . (19)

Each component of the diffusion is proportional to the number of diffusive de-
fects, i.e. the concentration of vacancies or interstitials, and proportional to the
probability to hop to the next site, measured by the energy barrier Em(X), as
shown in Figure 5. Then the total diffusion can be expressed as

D(T ) ∝ fV CV e−Em(V )/kBT + fICIe
−Em(I)/kBT , (20)

where the correlation factors fV and fI have been introduced. The correlation
factors measure the probability that a diffusive specie comes back to in its
previous position when it reaches the saddle point. In general, the correlation
factors do not deviate much from 0.5. Since the concentration of a defect (at
thermodynamical equilibrium) is measured by its formation energy, the diffusion
coefficient finally reads

D(T ) ∝ fV e−[Ef (V )+Em(V )]/kBT + fIe
−[Ef (I)+Em(I)]/kBT , (21)

This leads to the definition of an diffusion activation energy for defect X:

EA(X) = Ef (X) + Em(X). (22)

These three energies are schematically represented in Figure 5. Note that the
entropic effects have been disregarded in the previous equations. In principle,
the free energies should be considered instead of the energies.
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The measurement of the diffusion coefficient as a function of T in Arrhenius
plots (lnD(1/T )) gives access to the activation energy, not to the individual
values of Ef and Em. In the experiment the range of accessible temperature
is limited unfortunately. Too high temperatures would melt the sample, too
low temperatures would hinder so much the diffusion that no significant signal
would be visible even waiting for several months. Furthermore, if the activation
energies of vacancies and interstitials are not well separated, the Arrhenius plot
would be very similar to a single straight line and only one total activation
energy would be obtained. Owing to these limitations, the computer simulations
of diffusion appear as a tool of choice to complement the experiment.

As the defects are relatively mobile inside the crystalline matrix, the meeting
of two defects is a possible event. In this case, the binding of two defects, says
X and Y, that forms a complex XY, can be written as a chemical reaction

X + Y 
 XY. (23)

The binding energy Eb(XY) is hence defined as

Eb(XY) = Ef (XY)− Ef (X)− Ef (Y). (24)

Note that a negative binding energy is not sufficient to ensure the existence of
the complex XY. As in chemistry, the chemical reaction is driven by the law of
mass-action:

CXY = CXCYe
−Eb(XY)/kBT , (25)

where the influence of the concentration of the reactants CX and CY is made
obvious.

When the two defects are a vacancy and a self-interstitial atom, the clustering
of the two defects is a recombination which heals the crystalline structure. In
this case, the binding energy of the recombination is simply the opposite of the
formation energy of the so-called Frenkel pair.

3 Experimental characterization of defects
This section is a quick overview of a few selected experimental techniques that
can help characterizing a defect in a solid. For more details, the reader is referred
to the books Lannoo and Bourgoin (1981); Bourgoin and Lannoo (1983).

As detailed in the previous section, the measurement of the diffusion coeffi-
cient in a crystal gives access to the diffusion activation energy. The formation
and migration have just been described earlier. In the experimental setup,
mono-crystalline samples are grown with a controlled content of tracers: for
instance for silicon 30Si instead of the most common isotope 28Si. The samples
are then placed in an oven at a fixed temperature for a long period of time.
Finally, secondary ion mass spectroscopy (SIMS) permits one to figure out the
concentration profile of the isotopes after diffusion has occurred.

The photoluminescence technique is one the most used experimental tech-
nique to characterize the defect in semiconductors. It is based on the fluo-
rescence phenomenon: a photo-excited system re-emits a photon at a different
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energy. This photon is collected for analysis. By shining a laser on a sample, the
photons are absorbed and create electron-hole pairs (excitons) in the crystal. If
they were no defects in the sample, then the exciton would finally recombine and
emit a photon at the free-exciton energy (labeled FX). However in the presence
of defects, numerous process can happen. The exciton can bind to an acceptor
or a donor and then re-emit light at a lower energy (the binding energy with the
defect). These processes are labeled A0X and D0X. Light can be emitted from
an ionized donor and an ionized acceptor (labeled DAP). The exciton can also
decay into a free electron and a free hole, that may later on ionize the defects:

D0 + h+ → D+ + hν (26)
A0 + e− → A− + hν. (27)

These processes are labeled respectively (h,D0) and (e,A0). In addition to this
possible phenomena, the coupling with optical phonons of the lattice adds some
extra peaks. Finally, the photoluminescence spectra are rather messy, but the
dependence of the peaks upon temperature, defect concentration, strain etc.
can help sorting out the nature of each peak.

The infrared and the Raman spectroscopy is the inelastic diffusion of light
involving loss through the phonons of the lattice. Since the defects break the
translational invariance of the crystal, it is clear that additional modes will be
induced by the defects. Detecting these vibrational modes help characterizing
the nature and the concentration of defects.

An other prominent experimental technique involves the magnetic moment
carried by a single defect. In Electron Paramagnetic Resonance (EPR), the
possible unpaired spin introduced by the defect are measured by lifting the
degeneracy between spin up and spin down thanks to a static magnetic field
(Zeeman effect). Then transitions from the spin up and spin down states are
produced with a second oscillatory magnetic field. This technique is very pow-
erful. Since most pristine bulk materials consists only of spin-paired electrons,
EPR is only sensitive to the defects. However it is limited to defects have a
non-zero magnetic moment S2 6= 0. EPR technique furthermore gives infor-
mation about the point group symmetry of the defect and its environment, as
the magnetic moment are slightly modified by the spin states of the neighboring
nuclei. EPR allows one to measure the total magnetic moment and then to have
a measure of the concentration of the defect, for instance along with a thermal
annealing.

There are several other important techniques that I will only mention here:
Deep Level Transient Spectroscopy (DLTS), which plays with the occupation of
the defect states with the temperature; resistivity recovery measurements, which
measures the resistivity during a thermal annealing; Hall current measurement,
which characterizes the nature of the conduction in a semiconductor (p-type or
n-type).

All these experimental techniques provide us with some knowledge about
the defects involved. However many of them need theoretical model for further
interpretation. In the recent years, ab initio calculations have become the tool
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Figure 6: Supercell technique exemplified in two-dimensions: the red cell
containing the defect of interest is replicated (blue cells). The blurs are simplified
(artistic?) representation of the defect wavefunction.

of choice to complement the experimental findings.

4 Challenges for the ab initio calculation of de-
fects

As stated above, the ab initio calculation are highly relevant for defects, since
they are able to provide in a consistent manner the atomistic and electronic
description of point defects. This piece of information is crucial for the in-
terpretation of experiment and for the prediction of material properties. The
coming-of-age of ab initio calculations in condensed matter can be witnessed
nowadays: Calculations are no longer used to back-up the experimental find-
ings, they are also used to predict the properties of never synthesized materials
(Van Noorden, 2014). Unfortunately, whereas for many ground-state properties
the ab initio calculations can be considered as reliable enough for materials’
prediction, the situation is more contrasted when studying point defects. There
are two main issues that prevents the defect calculations from being considered
as predictive: the image interactions and the band gap problem.
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4.1 Supercell technique and the spurious image interac-
tions

The ab initio calculations in condensed matter are all based on periodic bound-
ary conditions. There is no alternative nowadays. Of course, the real samples
are finite; however calculating a real size sample is far beyond the computa-
tional capabilities. Try to imagine the calculation of a crystal of a length of 100
atoms: this would require a 1 million atom calculations, with no certainty that
the bulk effects will prevail over the surface effects. Indeed, even with a cube of
1 million atoms, 6 % of the atoms are located on the surface! On the contrary,
the periodic boundary conditions are perfectly suited to evaluate infinite crystal
properties just calculating the unit cell. This method matches our needs for
pristine bulk properties. But for defects, the unit cell description is not suitable
anymore. In order to mimic an isolated defect, one may then introduce the
defect in a supercell consisting of several unit cells. The larger the number of
unit cells in the supercell, the more diluted the defect concentration.

The experimental concentration of defects is generally very low. They are a
few examples in which the dopant concentration is of the order of a few percents,
as for transparent-conductive oxide ZnO doped with 3 % of Al. This is case the
defects cannot be considered as isolated and the semiconductors becomes de-
generate: it behaves as a metal (Grosso and Pastori Paravicini, 2000). However
in general, the concentration is way lower: at thermodynamical equilibrium
it is given by exp(−Ef/kBT ). In the calculations instead, the concentration
of defects is driven by the number of atoms in the supercell. Unfortunately,
nowadays it is not possible to consider supercell sizes with the correct defect
concentration. The typical ab initio can consider 1500-3000 electrons, which
translates into 500 atoms for silicon, but only 100 atoms for ZnO.

The too-small supercell size has several uncomfortable consequences as de-
picted in Figure 6. If the defect is too shallow, it may happen that the defect
wavefunction simply does not fit inside the supercell. These defects cannot be
addressed as of today, unless the supercell is increased facing the computational
scaling problem. Even for deeper defect, the defect wavefunction may have a
significant overlap with the image defect wavefunctions. The overlap can be
appreciated from the width of the defect band. An isolated defect should have
be described dispersiveless states in the Brillouin zone. In practical applica-
tions, this is rarely true. See for instance Figure 6.2 for a carbon vacancy in
silicon carbide in a cubic 216 atom supercell. Finally, the supercell technique
poses deep problem when combining it with long-range interactions, such as
the Coulomb interaction between the charges. Due to the long-range nature of
the Coulomb interaction, the mathematical treatment in the periodic boundary
conditions is very delicate. Many subtle points deserve a special care. In par-
ticular, charge interactions between the defect and its images through periodic
boundary conditions add a spurious Coulomb energy, which decays very slow.
Hence, correcting schemes have been designed, however it is not yet clear which
correcting framework is the most reliable.

This point will be extensively discussed in Part II of the memoir.
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Figure 7: LDA band gaps for a large family of semiconductors and insulators
compared to the experimental value. A perfect agreement would place all the
points along the diagonal. Figure is adapted from van Schilfgaarde et al. (2006).

4.2 Band gap problem and electronic structure of point
defects

Point defects are also problematic for the electronic structure description itself.
Intuitively, one can imagine that these systems will push the theoretical ap-
proaches close to their limit. The most used practical framework in the context
of electronic structure is Density-Functional Theory (DFT) (Hohenberg and
Kohn, 1964; Kohn and Sham, 1965; Parr and Yang, 1989). This theory is in
principle exact, however the practical usage heavily relies on approximation for
the unknown exchange-correlation (xc) term. The reliable approximations have
been obtained and validated either in the chemistry context, with finite isolated
atoms and molecules having localized wavefunctions, or in the physics context,
with periodic crystal unit cells having delocalized wavefunctions. Point defects
in crystalline structure will introduce both situations in the same simulation
supercell. Localized defect states will co-exist with the delocalized Bloch states
of the crystalline matrix. In such a complex situation, the conception flaws of
the practical xc approximations may appear to open light.

A prominent problem of DFT approximations for solid is the systematic error
for the band gaps of semiconductors and insulators. As shown in Figure 7, the
Local-Density Approximation (LDA) severely underestimates the band gaps.
The same conclusion holds for all the semi-local approximations (the General-
ized Gradient Approximation family). Whereas many properties of solids are
properly obtained even within an approximation that does catch the correct
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Figure 8: Nitrogen acceptor charge transition level in ZnO as calculated from
PBE and from HSE06.

band gap, the band gap error is particularly relevant for point defects. Indeed,
the point defect in semiconductors and insulators introduce electronic state in-
side the band gap, as explained above. The correct positioning of these defect
levels is crucial for the charge transition levels, for the formation energy etc.
Remember that the nature of the defect wavefunctions strongly depends on the
depth of the defect electronic level inside the band gap.

Having a too small band gap will spuriously produce shallow defects. Let me
exemplify this problem with the quest of p-type ZnO. n-type zinc oxide samples
are easily obtained and are already being used as transparent conductive oxide
in thin film solar cells. It would be highly desirable to obtain also the p-type
ZnO to produce cheap p-n junctions for light-emitting diodes for instance. The
band gap of ZnO (3.4 eV) matches the technological needs for this application.
Unfortunately p-type ZnO has remained elusive and controversial. Nitrogen
doping (in substitution for oxygen) is the most intuitive candidate to create a
shallow acceptor, after a quick glance at the periodic table. When calculating
the nitrogen acceptor level from PBE (Perdew et al., 1996), one of the GGA
flavors, an acceptor level indeed exists and is located 0.5 eV above the valence
band maximum. This acceptor level is not, strictly speaking, shallow enough to
induce hole doping, however it seems to point towards the right direction. But
PBE failure with the band gap of ZnO is even more pronounced as the usual
underestimation (0.7 eV instead of 3.4 eV). Then the acceptor level lies only
0.2 eV below the PBE conduction band! Based on the sole PBE results, it is
then impossible to conclude about the depth of the charge transition level and
thus impossible to conclude about the potentialities of N doping in PBE.

In the recent years, new approximations for the xc energy have emerged.
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The so-called hybrid functionals (Becke, 1993) come from the quantum chem-
istry community. They use a mixture of Hartree-Fock exact exchange and of
semi-local exchange from the usual DFT approximations. Whereas these mix-
tures have been designed and validated for small molecules, their results for
crystalline solids are also improving a lot over the semi-local approximations.
In particular, the most widely used hybrid functionals in the context of solids
are PBE0 (Adamo and Barone, 1999) and HSE06 (Heyd et al., 2006). Figure 8
shows the nitrogen acceptor level as obtained from HSE06, with a further fitting
of the exact exchange content (38 %) (Petretto and Bruneval, 2014). Now that
the band gap of ZnO is realistic, the depth of the acceptor level is obtained
close to the middle of the band gap. There is as a consequence no hope that the
nitrogen doping could induce the p-type conduction in ZnO by substitution of
a lattice oxygen atom. This example is a very convincing reason for which the
band gap must be correctly calculated to perform predictive electronic structure
calculations.

Though attractive, the hybrid functionals have still some deficiencies. First,
there is a problem of principle: the mixture of exact exchange and DFT xc
functionals is based on empirical grounds. The precise recipe is usually de-
signed to minimize the error with respect to a database of experimental values
for molecules. This is procedure is no longer truly ab initio. Furthermore,
the fitting on the specific subset of molecules can introduce biases. There is
no guarantee that the systems, such as crystals, which are far from the ones
included in the database are reliably described. For instance, most of hybrid
functionals have underestimation problems with the wide band gap semicon-
ductors and insulators. Second, the hybrid functionals require the evaluation of
the exact exchange contribution, which is non local in space. This evaluation
is much cumbersome in periodic systems. Then the supercell sizes must be de-
creased when using hybrid functionals, and the finite-size effects discussed in the
previous subsection are increased again. Third, there was a transient problem
when I started with point defect calculations: the availability of hybrid func-
tional codes with periodic boundary conditions was scarce at that time. Only
VASP (Kresse and Furthmüller, 1996; Paier et al., 2006) had the hybrid funtion-
als fully operational back in 2007. Nowadays the situation has improved much,
since Quantum Espresso (Giannozzi et al., 2009) and Abinit (Gonze et al., 2009)
have implemented them, however only for norm-conserving pseudopotentials.

For all these reasons, I address in Part III of the present memoir, the problem
of going beyond DFT for the electronic structure of point defects. The method I
analyze arises from a different theoretical framework: Many-Body Perturbation
Theory or Green’s function theory (Fetter and Walecka, 1971; Mahan, 2000).
In this field, the most prominent approximation for solids is certainly the so-
called GW approximation (Hedin, 1965; Aryasetiawan and Gunnarsson, 1998).
Part III is fully devoted to application of the GW approximation to the point
defect electronic structure. The Random-Phase Approximation, which is the
total energy expression corresponding to GW , is also examined. In contrast
with hybrid functionals, GW approximation is fully ab initio, it is known to
perform extremely well for many solids, from narrow band gap semiconductors
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to insulators and, last but not least, I did have a working code, Abinit, that
implements these calculations.
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Part II

Supercell induced artifacts in
point defect calculations
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Chapter 1

Introduction to the
corrections to the formation
energy in supercells

The formation energy of a charged defect was introduced as the central quantity
to measure the stability of a defect. Calculating it accurately is thus of the
utmost interest. As long as the calculations are treated on the paper, there is no
conceptual problem with the procedure. However when we turn to the practical
calculations with the use of supercells, then the extraction of the formation
energy value becomes a real challenge. We would like to extract data for isolated
defects, but the supercells technique provides us with a lattice of interacting
defects.

The combination of periodic supercells and of charged systems induces ar-
tifacts which prevents the brute force supercell convergence. First of all, it is
easily understood that the defect can interact with its periodic images and, as
the Coulomb interaction 1/r is long ranged, the convergence with supercell size
is not surprisingly extremely slow.

However this is not the only problem induced by the use of charged super-
cell. In periodic systems, the Coulomb energy is only finite for charge neutral
systems. Simulating charged defects requires then the addition of a compensat-
ing background density. Even with this compensating background density, the
electrostatic potentials in a periodic cell remain defined up to a constant. In
practice, the average electrostatic potential is generally set to zero, however we
should keep in mind that this is a conventional choice. The undefined value of
the average electrostatic potentials is already encountered in basic solid-state
physics when introducing the Madelung constant for ionic solids. The Madelung
constant is defined only within its summation scheme (spherical summation, cu-
bic summation, etc...), as the Coulomb interactions in 1/r induce conditionally
convergent sums.

The slow rate of convergence induced by the aforementioned issues is exem-
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Figure 1.1: Convergence of the formation energy of a silicon interstitial in
3C-SiC, Si4+TC, as a function of N , the number of atoms in the supercell. Red
line is the formation energy as obtained from Quantum-Espresso code within
LDA (without atomic relaxation). Blue dashed line is a fit to the calculated
value with function γ1N−1/3 Black dashed line is a fit with function γ1N−1/3 +
γ3N

−1. Thermodynamical conditions are Si-rich and µe set to the valence band
maximum.

plified in Figure 1.1 for a quite heavily charged defects (4+). Even the largest
supercell I could afford (1000 atoms) is 2 eV off the converged value. Reversely,
one can estimate that the supercell size to obtain a realistic formation energy
within 0.3 eV (which is not very accurate anyway) would require a 125 000 atom
supercell! It would take years before the computational power would reach this
level. There is therefore a stringent need to cure the sources of error in the
supercell approach, since the brute force approach is doomed to fail.

With these two artifacts (image charge interactions and undefinition of the
absolute electrostatic potential), the formation energy from Eq. (15) has to be
complemented with two correcting terms ∆Ee.s. and ∆V :

Ef (Xq) = Etot(X
q)−Etot(bulk)−

∑
i

niµi+∆Ee.s.+q(εVBM+µe+∆V ). (1.1)

1 Electrostatic correction ∆Ee.s.

The first correcting term ∆Ee.s. affects directly the energy. It is meant to correct
the spurious electrostatic interaction between the charge defects and its periodic
images. This spurious interaction is present in the total energy of the charged
supercell Etot(Xq) (the first term in Eq. (1.1)).

The historically first expression for this term was given by Leslie and Gillan
(1985), assuming the charged defect induces a point charge distribution. In the
supercell calculation, the density induced by the defect is of course “background
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Note that the (110) direction was intentionally selected since this is the most
favorable direction for density fluctuations in the diamond structure.

compensated”:

n(r) = q

[∑
R

δ(r−R)− 1

Ω

]
, (1.2)

where Ω is the volume of the supercell and R are the lattice vector. With
this notation, the periodicity of the defect density in the supercell calculations
has been emphasized. Then the difference between the isolated point charge
Coulomb energy and the point charge lattice Coulomb energy is given by the
Madelung energy,

∆Ee.s. =
αMq

2

2εΩ1/3
, (1.3)

with αM the Madelung constant of the lattice. The only refinement compared
to the usual Madelung expression is the introduction of the dielectric constant
ε that screens the bare Coulomb interaction in condensed matter. This very
simple expression, also named monopole correction, yields the leading effect in-
ducing the slow convergence with respect to the supercell size (Ω−1/3 behavior).
This correction explains what we observed for the charged defect provided in
Figure 1.1. To further prove that the monopole correction captures most of the
error, let us evaluate the dielectric constant from the fit in Figure 1.1. Using
Eq. (1.3), we obtain a value of dielectric constant of 7.13. This value should be
compared not to the experiment, but rather to the calculated LDA clamped-ion
dielectric constant, as the atoms have not been allowed to relax in the calcu-
lations of Figure 1.1. According to Karch et al. (1996), this dielectric constant
εLDA
∞ is 7.02, which is in very close agreement with the previous evaluation from
the monopole formula (∼ 1.5 %).
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Figure 1.3: Reduction of the Madelung constant induced by the finite exten-
sion of the charge density in units of the Madelung constant. The results are
obtained using a Gaussian charge distribution in a cubic lattice with edge L.
The Gaussian distribution with a width at half maximum d is shown in the
inset.

The defect induced charge density significantly departs from the point charge
distribution, as shown for two defects of silicon in Figure 1.2. There is a zone
around the defect, where the electronic density is vastly reorganized and farther
there are some oscillating tails, the so-called Friedel oscillations, which prop-
agates in the polarizable density. However, why does the point charge model
perform well in capturing the global trend? This is mainly driven by the de-
fect extension d compared to the supercell dimension L. If the extension of the
defect is small compared to the supercell, then the point charge modeling is to
work properly. If it is not so, then the point charge model will be insufficient.
A strong point supporting the monopole correction is the observation that for
any defect extension d there always exists a supercell dimension large enough so
that the monopole correction will be eventually justified. However, the shallow
defects may have a very large extension that no supercell affordable in DFT
would contain.

In principle, the point charge model could be complemented with higher
terms in the multipole expansion. This is the rationale behind the corrections
of Makov and Payne (1995). However, these terms are difficult to calculate
for solids, where one has to consider the dielectric screening. Furthermore, the
monopole term already captures the majority of the corrections, as shown in
Figure 1.3. In the Figure, I have evaluated numerically the complete correc-
tion induced by the Gaussian charge distribution displayed in the inset. This
calculation is a simplified version of the Ewald technique (Ewald, 1921; Mar-
tin, 2004), in which the short-range terms have been dropped. In other words,
the curve in the Figure is the difference between the Coulomb energy of a sin-
gle isolated Gaussian with a width at half maximum d and a cubic lattice of
Gaussian distributions with a compensating background. The reduction of the
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Madelung constant induced by the finite extension of the distribution is only
marginal: consider a Gaussian whose width is 25 % the supercell dimension,
then the Madelung constant is reduced by only 5 %! The inclusion of higher
multipoles can be then considered as a correction to the correction.

However, the Madelung correction is not sufficient to correct the calculation
in practice. In realistic cases, often due to the limited computer resources or
due to the complexity of the calculations (think of hybrid functionals, think of
crystal containing f electron elements) the supercell one can afford are not in
the limit where the Madelung correction is sufficient. Having a new glance at
Figure 1.1, the calculations we perform in practical cases are most often in the
regime where the two fits do differ. Remember that Figure 1.1 was obtained
within LDA for the simple crystal of SiC without relaxing the atomic positions.
That is why the second correction type, namely the potential alignment, could
be also significant.

2 Potential alignment correction ∆V

The potential alignment, labeled ∆V in the corrected formation energy expres-
sion (1.1), arises from the necessity to define an electron reservoir in order to
balance the formation equation. The chemical potential of the electron reser-
voir µe, or in other words the Fermi level, is easily defined for the bulk system.
As written in Part I, this study focuses on non-degenerate semiconductors for
which the Fermi level is bound in the range [εVBM, εCBm].

Unfortunately, when performing the total energy calculation with the charged
supercell Etot(Xq) term in Eq. (1.1), the absolute position of the eigenvalues is
lost. Indeed, in the periodic solids the electrostatic potentials are defined only
up to a constant (and also possibly to a surface dipole term). It is therefore
impossible in theory to compare straightforwardly the eigenvalue position in the
defective charged supercell with the eigenvalue position in the pristine neutral
bulk system. That is why the eigenvalues of the bulk system have to be shifted
with a constant ∆V in the correction formation energy.

The origin of this shift in the eigenvalues is two-fold: in the charged defective
cell, both the number of atoms has been changed and the charge has been
changed. First, when inserting a defect in the supercell (removing/adding an
atom), the electrostatic potential induced by the ions is modified. In the DFT
language, the external potential vext has been modified. Since this electron-
ion electrostatic potential is defined up to a constant, a potential alignment is
necessary. Second, when considering a charged defect, the more or less localized
charge around the defect will induce a modification in the electron-electron
electrostatic potential. Away from the charged defect, the added electrostatic
potential should behave as 1/εr. However, with the supercell technique, this
behavior is not allowed by the periodic boundary conditions. The charged defect
induced potential will be automatically altered by the periodicity and once
again, the induced potential will be defined up to a constant.

Disentangling the two origins (atomic and electronic) is not straightforward.
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Figure 1.4: Convergence of the formation energy of a silicon interstitial in
3C-SiC, Si4+TC, as a function of N , the number of atoms in the supercell. Red
circles is the unrelaxed formation energy as obtained from Quantum-Espresso,
and blue squares from Abinit. Both calculations use the same norm-conserving
pseudopotential, the same k-point grid, the same energy cutoff, and the same
Fast Fourier Transform grids. Thermodynamical conditions are Si-rich and µe
set to the valence band maximum.

The potential alignment is sometimes believed to be small in practice. However
it is not always true. Re-considering the example of the silicon interstitial with
charge 4+ in SiC, Figure 1.4 shows the uncorrected formation energy as obtained
from two plane-wave codes (Abinit and QEspresso) with the very same inputs.
The two code yield the same self-consistent charge density, so the electron-
electron potential modification should be identical. However these two codes
use different conventions for the ion-electron potentials. The difference for the
formation energy can be as large as 0.7 eV for the 64 atom supercell! Fortunately
the difference decreases with the supercell size, as fast as 1/N .

3 Motivation for the following sections
Still nowadays the two corrections ∆Ee.s. and ∆V are not completely under-
stood. The following sections will summarize the research lines I have been
following in order to improve the understanding and the quality of these two
corrections for charged systems. In particular, it should be noted that the
meaning of the potential alignment ∆V is far less understood than the spu-
rious charge-charge interactions. Furthermore, as the magnitude of ∆V is in
general smaller, it is often difficult to appreciate it from the numerical results.
The following section are mainly devoted to the definition of ∆V , both for the
electron-ion part and the electron-electron part.

32



Chapter 2

Ionic potential alignment in
projector augmented wave
method and in
norm-conserving
pseudopotentials

This section summarizes, further explains, and exemplifies the article by Bruneval
et al. (2014) printed in Appendix C.

1 Conventions in periodic codes vary
The starting point of this study was the apparent discrepancy between plane-
wave codes I mentioned in the previous chapter in Figure 1.4. Since the po-
tential alignment is a subtle correction that consists of two different origins, it
appeared valuable to us to investigate on the origin of the difference between
codes. The proper potential alignment definition should of course reconcile the
different codes. However it is nevertheless interesting to understand what tiny
differences in the implementation would induce those sizable changes (0.7 eV for
the example in Figure 1.4) and how the potential alignment procedure would
fix the errors.

As the aforementioned calculations using Abinit or QEspresso are rigorously
identical, the difference could only arise from a difference in conventions for the
electrostatic potential. It is usually said that all the codes use the same con-
vention for the ill-defined electrostatic potential: the “zero average” convention.
However, this statement is not true in general. For the electron-ion potential,
codes use diverse conventions, which in turn produce diverse formation energies
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when they are uncorrected. Due to the use of norm-conserving pseudopoten-
tials, which can be though as created by a pseudo-charge, it is not surprising
that different conventions exist.

However we observed the same difference within the projector-augmented
wave (PAW) formalism (Blöchl, 1994; Kresse and Joubert, 1999). In PAW,
the all-electron quantities can be re-construct from pseudo-quantities, indicated
with a tilde sign. In particular, the valence electrons of the system experience
the effect of the true nucleus potential Z/r, not a smooth pseudo-potential which
is supposed to mimic the core plus nucleus potential. Of course, in the PAW
framework, a working pseudopotential, labeled vH [ñZc], is introduced. However,
the pseudopotential is simply an intermediate quantity, chosen for numerical
convenience. At the end of the calculation, the effect of the pseudopotential
is compensated in spheres around each atoms and the true physical potential
vH [nZc] is recovered. In the previous notations vH [n] stands for the electrostatic
potential induced by the charge density n.

If all the codes were using the same zero average convention for the elec-
trostatic potentials, the absolute position of the Kohn-Sham eigenvalues should
be identical. We have tested this against published absolute eigenvalues within
full-potential augmented plane wave (FLAPW) from Ishii et al. (2010). The
results provided in Table 2.1 demonstrate that none of the tested codes (Abinit
and QEspresso) implement the zero average convention. Note that VASP code
(Kresse and Furthmüller, 1996) would yield the same result as Abinit, since
Abinit implementation closely follows the article of Kresse and Joubert (1999).

2 Deriving the PAW formalism with a zero aver-
age potential

In the landmark paper of Kresse and Joubert (1999), the PAW formalism is de-
rived in a manner that emphasizes the similarities with the usual pseudopoten-
tial approach. In contrast with pseudopotential, the PAW framework requires to
evaluate the quantities partly on the plane-wave basis and partly on radial grids
in spheres around each atoms. One constantly needs to map plane-wave descrip-
tion onto radial grid description. In the original paper of Kresse and Joubert
(1999), the electronic and nuclear densities are not background compensated
(see Eq. (1.2)). The background compensation is then manually imposed at the

Table 2.1: Absolute value of the LDA valence band maximum of diamond at
lattice constant 3.564 Å from different calculations (eV).

code FLAPWa Abinit QEspresso Abinit Abinit QEspresso Abinit
Approach PAW PAW PAW NC NC NC

Corr. Corr.
εVBM 13.39 12.25 13.08 13.40 11.06 12.95 13.25

aRef. (Ishii et al., 2010)
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end of the derivation by setting some potential averages to zero.
In our article (Bruneval et al., 2014), we re-derived the PAW equations taking

into account the background compensated densities from the very beginning.
The considered valence electron density is

n′(r) = n(r)− N

Ω
(2.1)

where N is the number of valence electron per unit cell of volume Ω. The core
plus nucleus density reads

n′Zc(r) = nZc(r)− Nc − Z
Ω

, (2.2)

where Z is the number of proton and Nc the number of core electrons in the
unit cell. The total background compensated density is then

n′T (r) = n(r) + nZc(r)− Nc +N − Z
Ω

. (2.3)

For charge neutral calculations, the number of electrons Nc + N equals the
number of protons Z and the background automatically disappears.

With the introduction of these densities, we realized that when mapping
a density from plane-waves to the PAW augmentation sphere, a background
contribution in the sphere had to be incorporated for the calculation of the
Coulomb energy of the system:

EPAWbg =
Z −Nc −N

Ω

∫
drvH [n1T − ñ1T ](r). (2.4)

The total densities n1T and ñ1T have a superscript 1, which in the PAW convention
indicates quantities that vanish outside the PAW augmentation spheres. The
integration in the previous equation is hence limited to the spheres of the unit
cell. This term was not obtained previously in the PAW framework to the best
of my knowledge.

The detailed analysis of the new term EPAWbg is given in Bruneval et al.
(2014). However let me insist on a few intriguing characteristics. The back-
ground energy gives a non-zero contribution to the energy only for charged
systems where Nc + N 6= Z. The trace of the stress tensor is also modified for
charged systems, since the term has a 1/Ω dependence. However the most sur-
prising feature (to me) is its non-zero contribution to the Kohn-Sham potential,
irrespective to the charge of the system. Indeed, the Kohn-Sham Hamiltonian
is obtained by derivation of the energy with respect to the electron density n(r).
The derivative of EPAWbg with respect to n is not null, mainly due to the num-
ber of valence electrons N as a prefactor. N is of course a (simple) functional
of n

N =

∫
drn(r). (2.5)

In other words, this is not because a function is zero for a given x-coordinate that
its derivative is zero too! When calculating the contributions to the potential
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Figure 2.1: Formation energy of the unrelaxed vacancy in diamond with charge
2+, as obtained from LDA with Abinit code (blue diamond) or with QEspresso
(red circles), with the same norm conserving pseudopotentials. The cutoff radius
of the local component (d channel) of the pseudopotential has been varied from
0.6 bohr to 1.5 bohr. The uncorrected results are given with solid symbols,
whereas the potential aligned results are given with open symbols.

induced by EPAWbg, we obtained the revised value for the diamond valence band
maximum given in the column labeled “PAW Corr.” in Table 2.1. This absolute
eigenvalue nicely reproduces the FLAPW result. We could adapt the PAW to
the norm-conserving case. Obviously, the norm-conserving pseudopotentials are
farther from the all-electron results. However, we could introduce the effect of
the finite extent of the core electron density in the framework to obtain the
result “NC Corr.” in Table 2.1.

Obtaining the same absolute numbers in FLAPW and PAW is not a goal per
se. Of course, the physical properties are never extracted from the absolute po-
sition of the Kohn-Sham eigenvalues. However, for benchmarking and accuracy
checks, it appears to me that comparing the absolute Kohn-Sham eigenvalues
could help in the future. Furthermore, turning back to our original issue of the
potential alignment, the previous development have allowed us to highlight the
pseudopotential effect on the average potential.

3 Consequences for charged defects
As noted above, different codes may use different conventions for the average
electrostatic potentials. This is the case for the ionic potential in Abinit and in
QEspresso. With two different choices of average potential, the proper potential
alignment technique should be able to reconcile any convention. Let me follow
this idea in order to further precise the potential alignment technique.

The difference between Abinit and QEspresso arises from the expression cho-
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sen for the so-called “Zα” term in the total energy (Ihm et al., 1979; Martin,
2004). The term arises from the ion-ion repulsion, which is usually calculated
from the Ewald summation technique (Ewald, 1921). As the Ewald sums ac-
counts for the repulsion between point charges, the energy has to be corrected,
since the real positive charges used in the pseudopotential calculations are in-
stead a smooth pseudo-charge (remember ñZc in the PAW language). Abinit
(Gonze, 1997) implements the original formula of Ihm et al. (1979):

EZα =
Zion

Ω

∑
a

αa, (2.6)

where Zion = Z − Nc and the coefficients αa are integrals calculated for each
atom a in the unit cell. The expression of αa can be found in the Appendix C.
QEspresso implements another version of the formula

ENα =
N

Ω

∑
a

αa, (2.7)

that can be found in many text books (Martin, 2004; Payne et al., 1992). Once
again, as long as the system is charged neutral, N = Zion and the total en-
ergy is identical within the two conventions. However the absolute Kohn-Sham
potentials differ even in the charge neutral case:

vZα(r) = δEZα
δn(r) = 0 (2.8a)

vNα(r) = δENα
δn(r) =

1

Ω

∑
a

αa. (2.8b)

Let me compare the formation energy a charged defect would have using the
two above mentioned conventions. Figure 2.1 shows the formation energy of a
2+ vacancy using Abinit (Z convention) and using QEspresso (N convention).
I have modified the cutoff radius of the local component of the norm-conserving
pseudopotential to see how the formation energy behaves as a function of the
pseudization details. I expect a weak dependence of the physical formation
energy on the d component of the pseudopotential in diamond, since the valence
electrons have mainly a character sp. Obviously, the Z convention is much more
sensitive to the details of the pseudization, whereas the N convention is rather
insensitive.

With this, let me try to visualize the effect of changing the local component
of the pseudopotential. In Figure 2.2, one can appreciate how the introduction
of a charged vacancy changes the Kohn-Sham potential (electrostatic part only)
far from the defect, using the different conventions and different local pseu-
dopotentials. The proper potential alignment should compensate the spurious
dependence on the pseudization details observed in Figure 2.1:

∆V1 = vH [nDefect
T ](rfar)− vH [nPristine

T ](rfar). (2.9)

rfar denotes a point in the supercell “far enough” from the defect. Note that
I work here with the electronic potential and not the electrostatic potentials
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Figure 2.2: Cuts along the (111) direction of the Kohn-Sham potential arising
from electrostatic interactions in 64 atom supercell of diamond, with a vacancy
at the origin (black line) or without (red line). A close-up view of the effect of
the vacancy on the potential is given in the inset. The left-hand column graphs
employ the Z convention, whereas the right-hand column graphs employ the N
convention. The local pseudopotential has a cutoff radius of 1.5 bohr in the top
graphs and a cutoff radius of 0.6 bohr in the bottom graphs.
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that differ in sign, owing to the conventional negative charge of the electron.
The negative charge of the electron is the cause of many misunderstandings
that this convention should avoid. Applying this expression to the uncorrected
results in Figure 2.1 will, as announced, reconcile the results arising in the
different conventions and also from the different local pseudopotentials (see the
open symbols in the Figure).

However, the story has not reached an end yet. Note that the potential
alignment in Eq. (2.9) has been labeled with a subscript 1. In fact, this sim-
ple definition is sufficient to capture the atomic potential alignment, as just
demonstrated above. But it will unfortunately induce a double counting of the
electron-electron interactions. This double counting is to be discussed in the
next section.
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Chapter 3

Electronic potential
alignment: Relation between
∆V and ∆Ee.s.

This section explains the central argument of the article by Taylor and Bruneval
(2011), printed in Appendix C. It also provides updated conclusions, which go
beyond the original paper.

In the previous chapter, I have analyzed the potential alignment part that
aroused from the electrostatic potential induced by the ions. I have deliberately
disregarded the potential alignment produced by the electron-electron interac-
tion. The present section is dedicated to this issue.

1 Is there a need for further potential alignment
when the electrostatic correction ∆Ee.s. is used?

The electron-electron electrostatic interactions (spurious Hartree contribution)
are indeed problematic for the definition of the potential alignment. First of all,
one may think that the spurious image interactions are fully corrected by the
other correction term ∆Ee.s. in Eq. (1.1) and then no further term is required.
Then if one thinks that the correction term ∆Ee.s. only partially removes the
spurious interactions, a further potential alignment q∆V may be needed. How-
ever, this potential alignment term should not double count the interactions
that have already been taken into account with the previous term. Further-
more, when charging the defect (i.e. adding or removing electrons to the neutral
defect), the extra charge-charge interaction we spuriously introduce is screened
by the other charges present in the system. As a consequence, the spurious
interaction are divided by the dielectric constant of the system, which can be
approximated by the dielectric constant of the pure crystal as a first guess. If
only the electrons have been relaxed in the presence of the added charge, it is
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Figure 3.1: Hartree potential cut in eV created by a single point charge q = −1
(thin black line) compared to a cubic lattice of point charges (thick dashed
blue line). The periodic potential can be corrected by adding increasing mul-
tipole orders in the electrostatic correction ∆Ee.s. (thin dashed red line and
thin dashed-dotted green line). Note that the Hartree potential differs from the
usual electrostatic potential by a minus sign.

logically to employ the ion-clamped dielectric constant ε∞, whereas if also the
nuclei have been allowed to relax, then the corresponding dielectric constant
would be the static one ε0.

The relation between ∆Ee.s. and ∆V is not obvious at first sight. However,
considering a practical example, the situation becomes much clearer. In Fig-
ure 3.1, I compared the Hartree potential of a single point charge q = −1 to the
Hartree potential created by a cubic lattice of the same point charge (with a
compensating background). The point charge is placed at the origin. The peri-
odic electrostatic potential has been evaluated by the usual Ewald summation
(Ewald, 1921; Martin, 2004), with a zero average convention. Due to the pres-
ence of an arbitrary constant in the periodic potential, there is no simple way
to compare the two potentials. The periodic potential presents a plateau shape
far the defect. This plateau is induced by the presence of equidistant charges
when the potential is evaluate around the cell boundary: this plateau should
not be considered as the zero of the potentials! Indeed, adding a constant shift
of 2∆EMad

e.s. /q to periodic potential makes more sense: the obtained periodic po-
tential nicely matches the isolated potential in the vicinity of the defects. This
demonstrates a tight link between the electrostatic correction ∆Ee.s. and the
potential alignment ∆V . But where does this link come from?
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2 Demonstration of the link between the poten-
tial alignment and the electrostatic correction

This question is answered in the article by Taylor and Bruneval (2011) in an
elementary way that I would like to reproduce here. The argument developed
in this article is based on the comparison of the Kohn-Sham potential obtained
in a truly isolated defect and in a periodic system subjected to spurious charge-
charge interactions. Starting from the total energy expressions, the electrostatic
correction term ∆Ee.s. is precisely meant to link these two systems’ total ener-
gies:

Eiso = Eper + ∆Ee.s.. (3.1)

The Kohn-Sham potential(Kohn and Sham, 1965; Parr and Yang, 1989) is de-
fined as the functional derivative of the total energy without the kinetic energy
T with respect to the electron density n(r). Hence, the isolated and periodic
Kohn-Sham potentials v are linked through

viso = vper +
δ∆Ee.s.
δn(r)

. (3.2)

At first sight, ∆Ee.s. may look independent from n(r) However this is not true,
following the same argument I developed in the previous chapter. Let us specify
the expression of ∆Ee.s. using the simplest expression available, the Madelung
correction of Leslie and Gillan (1985). Note that one could use more advanced
expressions, such as the correction of Makov and Payne (1995), as did Komsa
et al. (2012). The Madelung correction introduced in Eq. (1.3) does have a
dependence with the charge of the supercell q. Indeed, the charge of the supercell
can be expressed (re-using the notation introduced in the previous chapter) as

q = Zion −N = Zion −
∫
drn(r). (3.3)

Here arrives the dependence on the electron density n(r). And the final results
reads

viso = vper −
αMq

εΩ1/3
. (3.4)

This conclusion justifies the shift applied to the periodic potential in the Fig-
ure 3.1. As written above, it is possible to go beyond the simplest monopole
correction and introduce the next term, the quadrupole term, following Komsa
et al. (2012):

∆EMP
e.s. = ∆EMad

e.s. −
2πqQ

3εΩ
(3.5)

where the quadrupole Q reads

Q =

∫
drr2n(r). (3.6)
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Adding this term in the derivation improves the description. Besides a quadrupo-
lar term, it also introduces a position dependent term which is also proportional
to q:

viso(r) = vper −
αMq

2εΩ1/3
+

2πq

3εΩ
. (3.7)

With this term, the obtained potential is not any more periodic as shown in
Figure 3.1. The comparison between the isolated potential and the periodic one
is then valid in a broader range. As the Madelung correction is exact for the
energy of a point charge, I can conjecture that the isolated potential should be
also exact if all the higher order terms in the multipole expansion are included.
The surprise, in my opinion, is the presence of terms that arises from all the
momenta of the distribution. For a point charge, the higher momenta beyond
the monopole are all going to zero. As a consequecne, their contribution to the
energy is zero, but their contribution to the potential (which is a derivative)
remains finite!

3 Consequences for the potential alignment def-
inition

Turning back to the potential alignment definition, I have just shown that the
Madelung corrections already accounts for a transformation in the Kohn-Sham
potential, rigorously transforming the periodic electrostatic potential into the
isolated potential. The challenge is then to find out the charge distribution
nd(r) induced by the charged defect. In realistic case, nd(r) is not a simple point
charge and finding the corresponding ∆Ee.s. may become challenging. Recently,
Freysoldt et al. (2009) have shown that the potential alignment procedure may
be indeed useful to address the details of the charge distribution which have
not been captured by the charge distribution selected to calculate ∆Ee.s.. As
further explained by Komsa et al. (2012), when doing so, the potential alignment
precisely designed for that purpose.

These difficult concepts are better understood with a practical example. Let
me explain the ideas of the electronic potential alignment with Gaussian defect
distributions, normalized to −1:

nσd (r) =
−1

(
√

2πσ)3
e−r

2/2σ2

, (3.8)

where the length σ measures the spread of the distribution. Gaussian defect
distributions are particularly convenient, since all the calculations, both for iso-
lated charge distribution and for periodic distributions, can be straightforwardly
evaluated numerically. The Gaussian distributions are meant to be a more real-
istic model for realistic defects that spread over a finite volume in the supercell.
Figure 3.2 shows the periodic potential created by the periodic Gaussian distri-
butions

nσ
′

d (r) =
∑
R

nσd (r−R) +
1

Ω
, (3.9)
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Figure 3.2: Periodic Hartree potential cut in eV created by Gaussian distribu-
tions with different widths. σ = 0 corresponds to a lattice of point charges. The
inset shows a close-up view of the cell boundary region. Note that the Hartree
potential differs from the usual electrostatic potential by a minus sign.

with the standard zero average convention. I employ here the prime notation
introduced in the previous chapter for periodic background compensated den-
sities. The effect of the zero average convention is made obvious: wider spread
Gaussian distributions induce a smaller potential in the region of the defect and
therefore the potential is less negative far away from the defect (see the inset).

Imagine now that one had use a point charge modeling to obtain the value of
the electrostatic correction ∆Ee.s., but the true defect distribution is a Gaussian
with a finite width σ. The argument of Freysoldt et al. (2009) is that the
potential shift far from the defect can further correct for an incorrect modeling of
the charge distribution nd(r). For Gaussian distributions, one can calculate the
exact electrostatic correction (this is the Ewald energy without the short range
part). Let me compare the electrostatic correction and the Hartree potential far
from the defect for several values of σ as shown in Figure 3.3. There is a perfect
linear correspondence between the electrostatic correction and the potential at
cell boundary. At least for Gaussian distribution, it is then justified to use

∆Eσ1
e.s. = ∆Eσ2

e.s. + q (vσ1

H (rfar)− vσ2

H (rfar)) . (3.10)

Remember that the example in Figure 3.3 used q = −1. As a consequence in
a practical case, where the Madelung correction was used for the electrostatic
correction (∆EMad

e.s. = ∆Eσ=0
e.s. ), the correction for the true σ can be obtained

with
∆Eσe.s. = ∆EMad

e.s. + q
(
vσH(rfar)− vσ=0

H (rfar)
)
. (3.11)

This formula obtained empirically for a Gaussian charge distribution in a cubic
lattice was also checked successfully for linear combination of Gaussian in non-
cubic lattices. Komsa et al. (2012) obtained analytically the same result from
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Figure 3.3: Electrostatic correction ∆Ee.s. as function of the Hartree potential
away from the defect as extracted from the previous Figure for several Gaussian
distributions normalized to q = −1. The blue dotted line is a linear fit of the
data with slope -1.

the expansion of the electrostatic corrections up to the quadrupole. It appears,
according to my numerical results, that higher order momenta give a vanishing
contribution.

4 Concluding remarks
In summary, the spurious charge interaction between the images could com-
pletely be considered through the electrostatic correction ∆Ee.s. or completely
be considered through the potential alignment q∆V . In practical cases, anyone
can choose the part of the correction included in ∆Ee.s. or in q∆V . In my
opinion, it appears useless to refine the modeling of the defect charge density
beyond a point charge or beyond a single Gaussian distribution with a fixed
width, since anyway the potential alignment will be present to fix the inade-
quacy of the model charge selected. This final statement goes beyond the idea
present in the original paper of Freysoldt et al. (2009).

Summing up the atomic and electronic potential alignement contributions
as described in the present and previous chapter, I recommend the expression
for the total finite size effect corrections:

∆Ee.s. + q∆V = ∆EMad
e.s.

+ q
[
vH [nDefect

T ](rfar)− vH [nPristine
T ](rfar)− vσ=0

H (rfar)
]
. (3.12)
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Ω. The Madelung correction is given with red square symbols. The correction
on top of the Gaussian is plotted with blue circles. The dashed lines highlight
the slope in the log-log scale.

This expression contains both the atomic and the electronic potential alignments
contributions with no distinction.

It is worth noting that, while these results agree with the developments of
Freysoldt et al. (2009) and Komsa et al. (2012), they contradict the highly cited
paper of Lany and Zunger (2008). Indeed, Lany and Zunger argued that the
quadrupole term in the Makov-Payne expansion scales with the supercell edge
Ω−1/3. They proposed therefore to merge the monopole and the quadrupole
terms or, in other words, to rescale the monopole with an empirical factor 2/3. In
Figure 3.4, both monopole correction and the difference between the monopole
and the exact electrostatic correction are plotted for a Gaussian distribution
with a finite width as a function of the supercell volume Ω. In log-log scale,
it becomes obvious that the monopole indeed scales with Ω−1/3. However, the
remaining correction does scale with Ω−1 almost perfectly, in contradiction with
Lany and Zunger (2008).
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Part III

Many-body Perturbation
Theory for point defects
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Chapter 4

Introduction to the GW
approximation

Before starting with the application of the GW approximation, it is worthwhile
recapping the basics underlying the GW theory. Since the GW approximation
is not so widely spread, I adapted the review chapter I coauthored with Matteo
Gatti on the topic (Bruneval and Gatti, 2014).

1 The Green’s function G and the self-energy Σ

The single-particle Green’s function G is the most basic ingredient of MBPT.
The time-ordered Green’s function describes the propagation of an extra electron
in an electronic system for positive times and the propagation of a missing
electron (i.e. a hole) for negative times:1

iG(rt, r′t′) = θ(t− t′)〈N0|ψ(rt)ψ†(r′t′)|N0〉
−θ(t′ − t)〈N0|ψ†(r′t′)ψ(rt)|N0〉, (4.1)

where |N0〉 denotes the exact ground-state wavefunction of an N electron sys-
tem, ψ and ψ† are the annihilation/creation field operators in the Heisenberg
picture, and θ is the step function.

The physical meaning of G becomes clear when inserting the closure relation
in between the two field operators and taking a Fourier transform in time. The
so-called Lehmann representation reads

G(r, r′, ω) =
∑
i

fi(r)f∗i (r′)

ω − Ei
. (4.2)

1Here the spin degrees of freedom are omitted for simplicity. The generalization is however
straightforward.
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The poles of G are located at the energies Ei

Ei = EN+1i − EN0 − iη when Ei > µ

= EN0 − EN−1i + iη when Ei < µ, (4.3)

where the energy EN±1i are the exact eigenenergies of the N±1 electron system
and i is the index labeling the exact eigenvectors of both the N − 1 and N + 1
electron systems. The ubiquitous vanishing positive η has naturally arisen from
the Fourier transform of the step functions. In a solid, the discrete set of poles
in Eq. (4.2) merges into a branch-cut. The so-called Lehmann amplitudes fi
are then defined as

fi(r) = 〈N0|ψ(r0)|N + 1i〉 when Ei > µ

= 〈N − 1i|ψ(r0)|N0〉 when Ei < µ. (4.4)

Note that the Lehmann amplitudes fi are not mutually orthogonal. From this
representation, we see that the poles Ei carry the exact ionization energies of
electrons in the system or the exact affinity energies. The analytic structure of
G is also made clear: the poles lie slightly above the real axis for Ei < µ and
slightly below for Ei > µ. The poles can be directly compared to the peaks
obtained from a photoemission or inverse photoemission experiment.

Because G is the fundamental quantity, a great deal of effort has been put
in to its evaluation in a many-body context. This poses a very large challenge
since equation of motion for G involves the two-particle Green’s function. Its
equation of motion in turn involves the three-particle Green’s function, and so
on. The standard remedy in MBPT is to break this hierarchy by introducing
an effective operator, the self-energy Σ. As Schwinger showed, by introducing
an auxiliary external field U(rt) that is set to zero at the end, it is possible
to formally express the two-particle Green’s function as a function of the one-
particle Green’s function (Strinati, 1988). This results in a equation of motion
for G alone:∫

dr′ {[ω − h0(r)− VH(r)] δ(r− r′)− Σ(r, r′, ω)}G(r′, r′′, ω) = δ(r− r′′).

(4.5)
Here h0 is the non-interacting Hamiltonian and VH the Hartree potential. Note
that the self-energy Σ hides all the complexity of the original problem and
thus is a non-local, dynamical and non-Hermitian operator. When Σ = 0 the
Green’s function G0 is simply the resolvent of the Hartree Hamiltonian: G−10 =
ω − h0 − VH . We refer the reader to the review articles of Strinati (1988) or of
Hedin and Lundqvist (1970) for further details.

Dyson’s equation results by multiplying Eq. (4.5) by G0:

G(r, r′, ω) = G0(r, r′, ω) +

∫
dr1dr2G0(r, r1, ω)Σ(r1, r2, ω)G(r2, r

′, ω). (4.6)

This equation establishes the link between the Hartree Green’s function G0

(easily calculated) and the fully interacting Green’s function G (very hard to
calculate) through the self-energy Σ.
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The purpose of MBPT is then to provide approximations with increasing
accuracy for the self-energy. The Coulomb interaction between electrons

v(r− r′) =
1

|r− r′| (4.7)

is considered as the perturbation with respect to the independent-particle case.
The first-order contribution to the self-energy is nothing else but the Fock ex-
change operator (the Hartree potential is already taken into account by G0).
This level of approximation is widely used for atoms and molecules, and in
quantum chemistry perturbative methods in v with respect to Hartree-Fock are
known as Møller-Plesset perturbation theory (Møller and Plesset, 1934). How-
ever for the homogeneous electron gas Hartree-Fock yields an anomalous zero
density of states at the Fermi level. There is therefore a stringent need for
higher order terms for periodic systems. Unfortunately, the analytic evaluation
of one of the two second-order contributions is not finite in the case of the ho-
mogeneous electron gas (Fetter and Walecka, 1971; Mahan, 2000). Perturbation
theory is thus not justified. How should one proceed to circumvent this problem,
especially for periodic systems?

2 The screened Coulomb interaction W

This divergence can be addressed in an effective manner by introducing a
screened counterpart to the Coulomb interaction v. Other electrons act as a
dielectric medium that reduces the interaction between any pair. It is common
sense that the interaction between charges is not the same in vacuum as in a
dielectric medium. At the macroscopic scale, this is measured by the dielectric
constant of the medium. At the microscopic scale, the screening of the Coulomb
interaction is given by

W (r, r′, ω) =

∫
dr1ε

−1(r, r1, ω)v(r1 − r′), (4.8)

where the microscopic dielectric matrix ε−1 has been introduced. ε is linked
to the macroscopic dielectric function εM (Adler, 1963; Wiser, 1963), which is
a measurable quantity. For instance, −Imε−1M is called the loss function and
can be measured by electron energy loss spectroscopy (EELS) or inelastic X ray
scattering (IXS).

So far, the expression of the dielectric matrix is not specified. Nevertheless,
one can still analyze the physical meaning of the dynamically screened Coulomb
interaction W (r, r′, ω). The effective interaction between electrons in a medium
is decreased from v, the bare Coulomb interaction, to W the screened interac-
tion. A perturbation theory based on W rather than on v makes then much
more sense. However there is a price to pay: the screened interaction W is dy-
namical, meaning that the screening is more effective for some frequencies than
for others. For metals, the static dielectric constant is infinite and consequently
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Figure 4.1: Schematic view of the three frameworks described in this review.
The exact expression (GWΓ, left panel) can be obtained after an initialization
with a guessed Green’s function G0 by iteration of all the Hedin’s equations.
The self-consistent GW approximation (GW , central panel) arises from the
iteration of the equations keeping the vertex function Γ = 1. The perturbative
GW approximation (G0W0, right panel) is the one-shot evaluation of the GW
self-energy based on the guessed Green’s function G0.

the long-range component of W vanishes. This fixes the problem of the vanish-
ing density of states at the Fermi level predicted by Hartree-Fock theory for the
homogeneous electron gas. Conversely, in the high frequency limit, the screen-
ing by the electrons becomes completely ineffective and the screened Coulomb
interaction is simply the bare Coulomb interaction.

The additional complexity contained in W compared to v bears the hope
that the perturbation theory is to be rapidly convergent. Maybe, as W already
contains an infinite sum of interactions v, just the first order in W will be
sufficient, as proposed by Hedin (1965) . . .

3 Hedin’s equations and the GW approximation
EmployingW instead of v in the MBPT allowed Hedin to reformulate the exact
equations of the solution of the many-electron problem for the calculation of G
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(Hedin, 1965). They read:

G(1, 2) = G0(1, 2) +

∫
d(34)G0(1, 3)Σ(3, 4)G(4, 2) (4.9a)

Σ(1, 2) = i

∫
d(34)G(1, 3)W (1+, 4)Γ(3, 2, 4) (4.9b)

W (1, 2) =

∫
d(3)ε−1(1, 3)v(3, 2) (4.9c)

ε(1, 2) = δ(1, 2)−
∫
d(3)v(1, 3)χ̃(3, 2) (4.9d)

χ̃(1, 2) = −i
∫
d(34)G(1, 3)G(4, 1)Γ(3, 4, 2) (4.9e)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫
d(4567)

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7, 3).(4.9f)

Contracted indexes (1) = (r1, t1, σ1) have been used for simplification. The
index 1+ denotes the times t1 + η for a vanishing positive η. Most of the
quantities have been introduced earlier. χ̃ is the irreducible polarizability and
Γ is the three-point vertex function. These non linear equations are coupled.
If solved self-consistently, these equations form an exact scheme to obtain the
solution of the many-body problem. This process is pictured in the left panel
of Figure 4.1. Of course, in practice even in the simplest cases, it is not feasible
mainly due to the presence of the three-point vertex function Γ. It is then
natural that an approximated scheme begins by simplifying this particular term.

The second term in the right-hand side of Eq. (4.9f) involves the self-energy
which is of first-order in W according to Eq. (4.9b). Retaining only the zero-
order terms in Eq. (4.9f) (i.e. the δ functions), Hedin’s equations are greatly
simplified:

G(1, 2) = G0(1, 2) +

∫
d(34)G0(1, 3)Σ(3, 4)G(4, 2) (4.10a)

Σ(1, 2) = iG(1, 2)W (1+, 2) (4.10b)

W (1, 2) =

∫
d(3)ε−1(1, 3)v(3, 2) (4.10c)

ε(1, 2) = δ(1, 2)−
∫
d(3)v(1, 3)χ̃(3, 2) (4.10d)

χ̃(1, 2) = −iG(1, 2)G(2, 1). (4.10e)

The irreducible polarizability χ̃ is then a simple product of two Green’s func-
tions. This is the well known Random-Phase Approximation (RPA) to the
dielectric matrix. Also the self-energy is much simplified: this is just the simple
product of G and W , giving the name to the GW approximation. It is of first-
order in W . The missing terms (second and higher orders in W ) are commonly
named the “vertex corrections”.

The set of equations (4.10a-4.10e) still requires a self-consistent treatment
since W and Σ depend on G, which is the quantity one needs to obtain. This
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is pictured in the central panel of Figure 4.1. The practical implementation of
these equations is still far from obvious. This is the reason why for many years
the GW self-energy has been evaluated non self-consistently.

4 Practical calculation of the GW self-energy: the
G0W0 approach

It is most often impossible to evaluate the Green’s function self-consistently
from Eqs. (4.10a-4.10e). However let us imagine that mean-field theories such as
Hartree-Fock or Kohn-Sham would provide a good description of the electronic
system under study. In a mean-field theory, the one-electron wavefunctions
φi(r) and eigenvalues εi allow one to evaluate the independent-particle Green’s
function2 G0

G0(r, r′, ω) =
∑
i

φi(r)φ∗i (r
′)

ω − εi + iηsign(εi − µ)
. (4.11)

The location of the poles of G0 are above the real axis for occupied states and
below for empty states. As a consequence, χ̃ and then W can be readily evalu-
ated from this expression of G0. Let us label this evaluation of the irreducible
polarizability, χ0, and of the screened Coulomb interaction, W0. Finally, the
GW self-energy is obtained as the convolution G0W0.

The so-called G0W0 approach consists in stopping the procedure immedi-
ately after the first evaluation of the self-energy, as shown in the right hand
panel of Figure 4.1. This “one-shot” procedure is justified when the starting
mean-field theory used for G0 is accurate enough for the targeted property. The
vast majority of the GW applications for almost 50 years have been obtained
with the G0W0 procedure. Of course, the choice of the starting point is mate-
rial dependent. The seminal paper of Hedin (1965) simply employed the free
electron model to calculate the GW self-energy for the homogeneous electron
gas. The first application of GW to real solids used either the Hartree-Fock
approximation (Strinati et al., 1980) or the local density approximation (Hy-
bertsen and Louie, 1985). For atoms, Shirley and Martin chose Hartree-Fock
(Shirley and Martin, 1993). The rationale underlying the choice is the selection
of the most accurate mean-field theory for the specific system under scrutiny.
This strategy is sometimes referred to as the “best G, best W ” approach.

In the quasiparticle approximation, the Dyson equation (4.6) becomes(
−∇

2

2
+ Vext(r) + VH(r)

)
ψi(r) +

∫
dr′Σ(r, r′, Ei)ψi(r

′) = Eiψi(r) (4.12)

In the G0W0 framework one assumes that the quasiparticle wavefunctions ψi
can be approximated by the Kohn-Sham orbitals φi. By comparing Eqs. (4.12)
and the Kohn-Sham equation, one finds that the quasiparticle energies Ei can

2G0 here can be understood as a generalization of the Hartree Green’s function introduced
in Eq. 4.6, and thus we keep the same notation for a distinct quantity.
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be thus calculated as a first-order correction with respect to the underlying
mean-field starting point from

Ei = εi + 〈φi|Σ(Ei)− Vxc|φi〉, (4.13)

where Σ is the G0W0 self-energy. From a linearization of the frequency depen-
dence of Σ, one finally obtains

Ei = εi + Zi〈φi|Σ(εi)− Vxc|φi〉, (4.14)

where the renormalization factors Zi are

Zi =

[
1− 〈φi|

∂Σ(ω)

∂ω

∣∣∣∣
ω=εi

|φi〉
]−1

. (4.15)

In most G0W0 calculations the band structures are obtained using Eq. (4.14).
One can also calculate the spectral function (the imaginary part of the Green’s
function) from

Aii(ω) =
1

π

|〈φi|ImΣ(ω)|φi〉|
[ω − εi − 〈φi|ReΣ(ω)− Vxc|φi〉]2 + [〈φi|ImΣ(ω)|φi〉]2

. (4.16)

The spectral function has poles in correspondence to the quasiparticle energies,
i.e. when ω − εi − 〈φi|ReΣ(ω) − Vxc|φi〉 = 0 [compare with Eq. (4.13)]. The
width of the quasiparticle peak is given by ImΣ(ω), which is hence linked to
the lifetime of the excitation (defined as the inverse of its width). The spectral
function can have other peaks, the satellites, that originate from structures in
ImΣ(ω). Also ω − εi − 〈φi|ReΣ(ω)− Vxc|φi〉 can have additional zeroes, giving
rise to satellites. Within the GWA this latter kind of satellites has been called
plasmarons (Hedin et al., 1967; Lundqvist, 1967), but later they have been
shown to be an artifact of the GWA (Blomberg and Bergersen, 1972; Bergersen
et al., 1973; Guzzo et al., 2011). In Hartree-Fock the self-energy is Hermitian:
ImΣ(ω) = 0. Therefore quasiparticle peaks become delta functions (i.e. the
lifetime of quasiparticle becomes infinite). Moreover, since the self-energy is
static, no other structures (e.g. satellites) can appear in the spectral function.

The GW self-energy can be split into a Fock exchange term Σx and a cor-
relation term Σc(ω): Σ(ω) = Σx + Σc(ω). While Σx = iGv is static, the
evaluation of Σc(ω) requires the calculation of the convolution integral of G and
Wp = W − v:

Σc(r1, r2, ω) =
i

2π

∫
dω′eiηω

′
G(r1, r2, ω + ω′)Wp(r1, r2, ω

′). (4.17)

Since Σc is obtained through the frequency integration (4.17), the fine details
of the energy dependence of Wp are often not important. In these cases one
can approximate the imaginary part of the inverse dielectric function ε−1 as
a single-pole function in ω (plasmon-pole model) (Hybertsen and Louie, 1986;
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Godby and Needs, 1989). Plasmon-pole models can be used for calculating
quasiparticle energies, but should be avoided for spectral functions, because for
example they don’t describe correctly ImΣ. In these cases the full-frequency
dependence of Σ is required and the frequency integration has to be performed
with care (Lebègue et al., 2003).

The spectral representation of Wp is given by (Hedin, 1999):

Wp(r1, r2, ω) =
∑
s

Ws(r1, r2)

[
1

ω − (ωs − iη)
− 1

ω + (ωs − iη)

]
. (4.18)

The poles of Wp are the energies ωs that correspond to neutral excitations
(electron-hole transitions and plasmons). By combining (4.18) with (4.11) and
performing the frequency integration (4.17), one finds that the G0W0 self-energy
is given by the sum of two terms:

ΣSEX(r1, r2, ω) = −
∑
i

θ(µ− εi)φi(r1)φ∗i (r2)W (r1, r2, ω − εi),(4.19a)

ΣCOH(r1, r2, ω) =
∑
i

φi(r1)φ∗i (r2)
∑
s

Ws(r1, r2)

ω − (ωs − iη)− εi
. (4.19b)

The first term arises from the poles in G and the second from the poles in W .
Owing to the similarity of the first term with the Fock exchange, it is usually
called the “screened exchange” term. The second term is referred to as the
“Coulomb-hole” term (Hedin, 1965). If a further static approximation is carried
out, this decomposition gives rise to the so-called COHSEX (Coulomb hole plus
screened exchange), first introduced by Hedin (1965); Hedin et al. (1967). This
static and Hermitian self-energy is obtained by setting ω − εi = 0 in ΣSEX(ω)
and ΣCOH(ω). This corresponds to assume that the main contribution to the
self-energy Σ(ω) stems from the states εi close to ω. So ω−εi is small compared
to main excitations in W which are at the plasmon energies ωs (Hedin, 1965;
Hedin et al., 1967).

In the majority of the practical cases, the G0W0 scheme is largely sufficient
to evaluate successfully the GW self-energy. However for some cases it is not.
As long as we are interested in defects, the computational burden restrains us
to G0W0.
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Chapter 5

GW calculations for large
supercells

The first problem before applying GW corrections to defective systems is the
computational burden involved by the use of supercells. Reasonable supercell
sizes consist of a minimum of, say, 50-100 atoms. Even with the constant in-
crease of computational power, the GW calculations are most often limited to
crystal unit cells. The reasons why the GW calculations are so cumbersome are
the truly non-local nature of the screened Coulomb interactionW , see Eq. (4.8),
and the dependence of the Green’s function G upon empty states. The latter
can really be problematic in actual calculations as documented in Aulbur et al.
(2000); Tiago et al. (2004); van Schilfgaarde et al. (2006). For instance, it is
not uncommon to have GW calculations a unit cell of semiconductor requiring
4 occupied states, but as many as 200 empty states.

In 2006, there already exist a few methods to remove (Reining et al., 1997) or
limit (Tiago and Chelikowsky, 2006) the dependence on empty states. However,
these methods have not been applied extensively, because of difficulties in the
implementation or because of limited accuracy. I and Xavier Gonze decided then
to cope with the slow convergence with respect to empty states in a simpler way
(Bruneval and Gonze, 2008).

1 Dependence on empty states in GW calcula-
tions

In the expression of the non-interacting Green’s function G0 from Eq. (4.11),
the sum over states runs over all the states, occupied and empty. In the GW
framework, G0 is then used in two different places: in non-interacting polariz-
ability χ0 = −G0G0 and in the self-energy Σ = iG0W . Therefore, the empty
state dependence occurs both in χ0 and in Σ. In Figure 5.1, the solid line shows
how large this dependence is in the case of cubic silicon carbide (3C-SiC) in
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Figure 5.1: Convergence study of the correlation part of the self-energy at
top valence (upper panel), at bottom conduction (middle panel), and of the
band gap (lower panel) of 3C-SiC as a function of the number of unoccupied
states explicitly included in the calculation of the polarizability (left) or in the
calculation of the self-energy (right). The solid (black) curve shows the usual
GW result with no correction. The other curves include the correction with
different values for the energy parameter ε̄χ0

: 0.5 Ha (dotted violet), 1.0 Ha
(long-dashed orange), 2.0 Ha (short-dashed blue), or 3.0 Ha (dot-dashed red)
above the last explicitly calculated band.
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both χ0 (left-hand panel) and in Σ (right-hand panel). As far as the band gap
is concerned, the slow convergence is visible, but not so problematic, because
it is an energy difference. However, when we turn to the absolute position of
a quasiparticle energy (referred to the mean electrostatic potential), the depen-
dence becomes visible: 200 empty states are required for a 0.1 eV accuracy.
Remember that the case of SiC is relatively simple. In transition metal oxides
in which the nature of the valence band maximum differs from the nature of the
conduction band minimum (e.g. Cu2O), even the band gap evaluation requires
a huge number of empty states.

2 Extrapolar idea
The starting point of our method was the extrapolar approximation used by
Anglade and Gonze (2008), which owes much similarity to the common-energy
denominator approximation (CEDA) used in quantum-chemistry, in particular
for optimized effective potential (OEP) generation (Sharp and Horton, 1953;
Krieger et al., 1990; Kümmel and Kronik, 2008). The expression of χ0 in fre-
quency is obtained by the convolution of G0 with itself:

χ0(r, r′, ω) =
∑
ij

φi(r)φ∗i (r
′)φj(r

′)φ∗j (r)

[
fj(1− fi)

ω − (εi − εj) + iη
− fi(1− fj)
ω − (εi − εj)− iη

]
,

(5.1)
where fi is the occupation (from 0 to 1) and η is a vanishing positive real
number. It would be tempting to get rid of the sum over i or j by using the
closure relation: ∑

i>Nb

φi(r)φ∗i (r
′) = δ(r− r′)−

∑
i≤Nb

φi(r)φ∗i (r
′). (5.2)

Unfortunately, the dependence upon i is also present in the denominator through
εi. Here comes the extrapolar idea: if beyond a given index i > Nb one assumes
that all the energy have the same common energy ε̄, then the closure relation
could be applied. For example, the first term in χ0 could be simplified from

∑
i occ

Nv<j≤Nb

φi(r)φ∗i (r
′)φj(r

′)φ∗j (r)

ω − (εi − εj) + iη
+
∑
i occ
j>Nb

φi(r)φ∗i (r
′)φj(r

′)φ∗j (r)

ω − (ε̄− εj) + iη
(5.3)

into

∑
i occ

Nv<j≤Nb

φi(r)φ∗i (r
′)φj(r

′)φ∗j (r)

[
1

ω − (εi − εj) + iη
− 1

ω − (ε̄− εj) + iη

]

+
∑
i occ

φi(r)φ∗i (r)δ(r− r′)

ω − (ε̄− εj) + iη
. (5.4)
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In this last expression, all the states beyond index Nb are included in the calcu-
lation in a very approximate manner: they are assumed to have the same energy
ε̄! However these states are taken into account in the calculation without the
need to actually calculate them! The same procedure can be applied to the
self-energy (see (Bruneval and Gonze, 2008) for further details).

3 Setting the position of the extra-pole
In practical calculations, the extrapolar approximation is used to complement
the explicitly calculated χ0 and Σ with an estimation of the remainder due to
the empty states which have not been included in the calculation. In the limiting
case for which all the states have been included, the remainder is strictly zero
whatever the choice for the parameter ε̄. At this stage, a practical question
rises: how do you set the energy of the extra pole ε̄? Admittedly, in most of
the applications ε̄ has been considered as a parameter. If one refers the ε̄ with
respect to the highest energy explicitly included in the calculation,

ε̄ = εNb + ∆, (5.5)

the convergence with a fixed ∆ value is very smooth, as shown in Figure 5.1.
If ∆ is too small, the extrapolar correction is too large and the self-energy
converges from below, whereas if ∆ is too large, the extrapolar correction is too
small and the self-energy converges from above. A good strategy is to find the
value of ∆ that would make the convergence flat. I have no formal proof for
this procedure. But it has always worked nicely for all the systems studied so
far, crystals, supercells, nanowires (Peelaers et al., 2011), or isolated molecules
(Bruneval, 2009). I have observed that the value of ∆ is generally larger for
crystalline systems (∼ 2 Ha) than for finite systems (∼ 0 Ha).

In the original article, we rather advocated for the fulfillment of a sum rule
to set the most appropriate value for ε̄. This procedure is also a try-and-error
procedure since one needs to perform the calculation of χ0 to evaluate the
fulfillment of the sum rule (in reciprocal space) (Mahan, 2000; Taut, 1985):∫ +∞

0

dωωIm [εGG(q, ω)] =
π

2
ω2
p, (5.6)

where ωp =
√

4πn is the classical plasma frequency (n being the average elec-
tronic density). G stands for a reciprocal lattice vector and q for a Brillouin
zone vector. Though this procedure was not much used besides in our original
work, it is still quite instructive about how to improve the approximation in
the future. In Figure 5.2, I show in the upper how the usual χ0 slowly fulfills
the sum-rule when increasing the number of empty states. When the extrapolar
scheme is switched on, the convergence behavior of the sum-rule becomes dras-
tically different. In the lower panel of Figure 5.2, the fulfillment of the sum-rule
strongly depends on the transferred momentum |q+G|. For instance, for large
values |q + G|, the integral in Eq. (5.6) is clearly too small, which indicates a
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Figure 5.2: Upper panel: Value of the integral in Eq. (5.6) as a function of the
transferred momentum |q+G| without any correction using 10, 20, 50, 100, 200,
550 empty bands in 3C-SiC. Lower panel: Value of the integral in Eq. (5.6) as
a function of the transferred momentum |q+G| with 20 empty bands using no
correction, or a correction with an average energy ∆ of 0.5 Ha, 1.0 Ha, 2.0 Ha,
or 3.0 Ha.

too low value for ε̄. An obvious improvement of the extrapolar method would
be to have a common energy ε̄ that varies with |q + G|. In this case, the value
of ε̄ would still be independent from the state i and therefore the closure rela-
tion could still be applied. The implementation would only marginally be more
complicated. Note that the |q + G|-dependent energy is also obtained within
the scheme of Berger et al. (2010).

Finally, I would like to conclude with the application of the extrapolar
method to realistic system size of defect calculations. Figure 5.3 shows the con-
vergence behavior with respect to empty states with and without the extrapolar
method. It shows that the absolute position of the states are converged with
“only” 600 empty states. If ones compares to the 128 occupied states, this is a
1:5 ratio, which is much lower than the 1:50 ratio a standard GW calculation
would require.

In summary, the extrapolar method has greatly helped the application of the
GW approximation to large systems. The extrapolar method does not change
the scaling of the calculation with respect to the system size, but it divides the
prefactor by a 5-10. The number of empty states that needs to be stored in the
computer memory is reduced with the same ratio. This is an attractive feature,
since most often the memory is the actual bottleneck for GW calculations.
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Figure 5.3: Convergence study of the correlation self-energy at top valence
(upper panel), at bottom conduction (middle panel), and of the band gap (lower
panel) of 3C-SiC in a 64-atom cubic supercell as a function of the number of
unoccupied states explicitly included in the calculation of the polarizability and
in the self-energy.
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Chapter 6

DFT+GW construction for
point defects

This section summarizes, further explains, and exemplifies the article by Bruneval
(2012b) printed in Appendix D.

The necessity to have the correct band gap for the description of point de-
fects has been stressed in the introduction. The most effective and reliable
technique to obtain systematically the right band gap of semiconductors and
insulators is nowadays the GW approximation. The GW approximation to the
self-energy is the only truly ab initio technique which can predict band gaps with
no empirical parameter. Furthermore, the GW approximation has been shown
to be reliable for both delocalized states (the Bloch wavefunctions in solids) and
localized states (wavefunctions in molecules). The description of point defect
in crystals precisely involves these two types of electronic states: by breaking
the translation invariance, the point defects induce a few rather localized states
among a huge amount of crystal-like states. The GW approximation is hence a
very attractive technique for the calculation of point defects.

Unfortunately, the GW approximation is an approximation for the self-
energy, and therefore only provides quasiparticle eigenvalues. The quasipar-
ticle eigenvalues are relevant for the properties of defects, since the HOMO and
LUMO quasiparticle energies are, by definition, the total energy differences

εGWHOMO = Etotal(0)− Etotal(+) (6.1a)
εGWLUMO = Etotal(−)− Etotal(0). (6.1b)

In the context of a defect Xq with charge q, one sees that these definitions give
access to the the vertical transitions of the defect

εv(q → q + 1) = Etotal(X
q, q)− Etotal(X

q, q + 1)

= εGWHOMO(Xq, q) (6.2a)
εv(q → q − 1) = Etotal(X

q, q − 1)− Etotal(X
q, q)

= εGWLUMO(Xq, q), (6.2b)
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where the atomic structures have been explicitly stated (Xq stands for the
relaxed atomic structure of the defect X with charge state q). Note that these
definitions are referred to the zero of the potential so far. In practical case,
the results are usually presented with respect to the valence band maximum
εVBM, as explained in Part I. Then the GW approximation straightforwardly
gives access to the vertical transitions, which are the transitions measured with
photoluminescence.

However for the thermodynamical stability, the important quantity is rather
the thermodynamical transition

εth(q/q − 1) = Etotal(X
q−1, q − 1)− Etotal(X

q, q). (6.3)

This quantity involves the total energy for two different atomic structures and
therefore cannot be addressed by one single GW calculation. Since the GW
method is an approximation for the self-energy, it does not give access to the
total energies or to forces to relax the atomic positions. Of course, GW -like
approximations do exist for the total energy but they lead to very different ex-
pressions for the total energy. One of them, the Random-Phase Approximation
(RPA) energy, will be discussed here after in Chapter 8. Indeed in terms of
Feynman diagrams, the energy involves other diagrams than the self-energy di-
agrams (the diagrams need to be closed by a line and prefactors are required).
Furthermore, the RPA energy converges very slowly with the calculation pa-
rameters.

1 Introducing the DFT+GW method
In this context, Rinke et al. (2009) proposed an interesting combination of DFT
and GW in order to calculate the thermodynamical quantities. It is readily
achieved by inserting intermediate total energies in Eq. (6.3):

εth(q/q − 1) = Etotal(X
q−1, q − 1)− Etotal(X

q−1, q)

+ Etotal(X
q−1, q)− Etotal(X

q, q). (6.4)

Then the vertical transition energy can be identified and evaluated within the
GW approximation:

εth(q/q − 1) = εGWHOMO(Xq−1, q − 1) + Etotal(X
q−1, q)− Etotal(X

q, q). (6.5)

A total energy difference remains to be evaluated. However these total energies
have both the same number of electrons. One expects that DFT will perform
well in this case and will not be affected by the band gap problem. This method
is the DFT+GW method.

One can immediately anticipate several problems for the presented method.
First, the quality of the DFT+GW approach will depend on the choice of the
exchange-correlation approximation of the DFT part. In the original paper
of Rinke et al. (2009) and my subsequent articles (Bruneval and Roma, 2011;
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Figure 6.1: Formation energy of the carbon vacancy VC in 3C-SiC as a function
of the Fermi level µe in silicon-rich conditions. The dashed line stands for LDA
and the solid line for DFT+GW . The dotted lines show the data used for the
construction. The vertical lines delimit the conduction edge for LDA at 1.35 eV
and for GW at 2.19 eV.

Bruneval, 2012b), the choice was of course LDA or PBE. Nowadays, it would
be clever to use the higher quality hybrid functionals. Second, it is not granted
that DFT will be accurate for the structures and for the total energy differences
at fixed charge. Think of the Jahn-Teller distortions in silicon, which are poorly
described within LDA or PBE (Probert and Payne, 2003). Third, the energy
inserted in Eq. (6.4) was arbitrarily chosen. I could have inserted Etotal(X

q, q−
1) instead.

Then to obtain formation energies, a reference formation energy is still miss-
ing. Indeed, the DFT+GW method gives access only to the energetical transi-
tion εth. Rinke et al. (2009) proposed to use the DFT energy when the defect
levels in the band gap are all empty and construct the other formation energies
on this basis. If the reference formation energy is chosen for charge state q, the
construction reads

EDFT+GW
f (q − 1) = EDFTf (q) + εDFT+GW

th (q/q − 1) + µe + εVBM, (6.6)

where µe is the Fermi level. Once again, the DFT+GW method is questionable
for the choice of the reference formation energy.

I have insisted so far on the anticipated deficiencies of the DFT+GW method.
Let me now show the performance of the DFT+GW for a problematic case for
LDA. Figure 1 shows the formation energy of the carbon vacancy VC in cubic
SiC (3C-SiC) as obtained from 216 atom supercells. The DFT calculations have
been performed with 2x2x2 k-point sampling, whereas the GW calculations
have considered only the Γ point due to the numerical cost. Here and in the
following, GW will always refer to G0W0 based LDA inputs (GW@LDA). It
is difficult to conclude on the nature of the defect based on LDA calculations,
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since all the observed transitions occur in the vicinity of the LDA conduction
band edge. Note that the transitions are slightly above the LDA conduction
band edge due to the use of shifted k-points (the conduction minimum is at Γ).
Then legitimate questions arise: Is the defect level deep or shallow in reality?
By fixing the band problem, would the defect transitions follow the conduction
band edge or remain in the same position? These questions are answered by
the DFT+GW technique as shown in Figure 1. The DFT+GW approach used
the formation energy of the 2+ charge state as a reference, since then there is
no occupied defect level in the band gap. The defect states indeed follow the
conduction band edges. However the charge transitions do occur inside the GW
band gap. As a consequence, the presence of numerous carbon vacancies in irra-
diated samples may push the Fermi level µe much upwards. As the defect levels
are rather shallow, the use of charge corrections may not be fully justified in
this case. That is why the results shown in Figure 1 have been obtained without
such corrections. My DFT+GW results on VC have been recently confirmed by
the hybrid functional of Oda et al. (2013).

2 Assessing the DFT+GW method in a complex
case: the carbon vacancy in SiC

The DFT+GW technique is a promising approach, however as written above,
several technical approximations have been introduced. Here I would like to
describe how the degree of freedom for the insertion of total energies in Eq. (6.4)
could be rationalized for the carbon vacancy case in SiC.

This case is rather delicate, since the defect level move above the conduc-
tion band minimum for some atomic configurations. In Figure 6.2, the LDA
band structure is provided for three charge states. When changing the pan-
els, both the atomic structure and the electronic state occupation are modified.
For charge state 2+, the empty defect state is far above the conduction band
minimum at Γ point.

Figure 6.3 shows different paths that could be used to calculate the transition
εth(2+/1+). Two obvious paths are i) first change the charge, then the structure
or ii) first change the structure and the charge. However, any other choice could
be also legitimate. Imagine one uses a path through the atomic position of V0

C:

εth(2 + /1+) = Etotal(V1+
C , 1+)− Etotal(V2+

C , 2+)

= Etotal(V1+
C , 1+)− Etotal(V0

C, 1+)

+Etotal(V0
C, 1+)− Etotal(V0

C, 2+)

+Etotal(V0
C, 2+)− Etotal(V2+

C , 2+). (6.7)

This path requires two structural changes (the first and third energy differences
evaluated within LDA) and one charge change (the second energy difference
evaluated within GW ). A delicate manipulation comes from the fact that DFT
total energy needs to be evaluated when the vacancy bears a +1 charge state
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Figure 6.2: Defect levels of the carbon vacancy V+
C in 3C-SiC (red lines) as

obtained from LDA for three different equilibrium geometries for charge states
2+, 1+, and 0, along the Γ-R line. The position of the defect state is compared
to the valence and conduction bands of the pristine SiC in a 216 atom supercell
drawn with the shaded areas. When the vacancy bears a 1+ charge, the defect
level for spin up is occupied with one single electron (solid red line) and the
defect level for spin down remains empty (dashed red line).

in the 2+ atomic configuration. As shown in the band structure plots in Fig-
ure 6.2, the defect state has to be filled, however it is above the conduction
band. A standard self-consistent DFT calculation would obtain the minimum
total energy with the extra electron placed in the lowest energy level available,
that is the conduction band minimum. This would not reflect the charged defect
situation I would have liked to described. However, with constrained occupation
DFT, it is possible to enforce the occupation of the defect level, even though
this is not the minimal total energy situation. Also when extracting the quasi-
particle energy from the GW calculation with atomic configuration 2+, I had
to carefully pick up the quasiparticle energy associated with the defect level and
not the LUMO, which is in this case the conduction band minimum. Finally,
if care is taken to populate or depopulate the defect level, the thermodynamic
transition εth(2 + /1) can be alternatively obtained from any of the three paths
described above with an accuracy of 0.1 eV.

This very encouraging result shows that the DFT+GW is a consistent method
to evaluate the thermodynamical transitions of defects, even when a Jahn-Teller
distortion occurs and induces a lowering of the point group symmetry of the de-
fect, as shown in Figure 6.3).
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Figure 6.3: Schematic Born-Oppenheimer surfaces for charge states 2+ and
1+ of the carbon vacancy in 3C-SiC. The horizontal axis designates the three
equilibrium structures for charge states 2+, 1+, and 0. The corresponding point
group of the configurations as well as distances between the first neighbors of the
vacancies are specified. The energy differences on the same surface are obtained
from LDA, whereas the vertical transitions at constant geometry are obtained
from the GW approximation. The energy values for the vertical transitions
are referred to the bulk valence band maximum. The (orange) upward arrows
designate the energy for adding an electron to V2+

C . The (pink) downward arrow
shows the energy for removing an electron to V+

C . The red difference of energies
has been obtained by quenching the occupations of the 2+ geometry, in order
to populate precisely the defect states above the conduction edge.
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3 Final remarks on DFT+GW

The present validation of the DFT+GW method is limited to one particular
example. Other examples have been reported in the literature for which the
combination seems to fail (Martin-Samos et al., 2010) or to be more problematic
(Chen and Pasquarello, 2013).

It is common sense to understand that the smaller the structural change
the more reliable the DFT+GW combination. In the limit of two charge states
having the same atomic structure, DFT+GW approximation would be perfect.
In the context of amorphous SiO2, Martin-Samos et al. (2010) have pushed the
DFT+GW to its limits by calculating different types of oxygen interstitials with
DFT+GW . Indeed, in amorphous SiO2, the prevailing structure of the oxygen
interstitial depends on the charge state. This is a rather extreme case that
DFT+GW technique does not seem to describe properly.

So far, here and in the literature, only the LDA or PBE approximations were
employed in the DFT part of DFT+GW . As the hybrid functionals become
wider and wider spread nowadays, I can foresee that the future of DFT+GW
has to be based on these approximations. This combination will have numerous
advantages: i) Better description of the relaxed structures (in particular for
Jahn-Teller distortions); ii) Rarer issues with defect states outside the band
gap, as in the specific case of VC in SiC; iii) Improving the quality of the GW
run, since in the G0W0 approach the results depends on the starting point; iv)
Improved consistency between the DFT and the GW calculations, since hybrid
functionals contains a part of exact-exchange, as GW does. For all the above
reasons, I believe that the quality of the DFT+GW combination will improve in
the next future by using hybrid functionals. However, if the hybrid functional
become so much predictive, it might be that the GW step would not be crucial
anymore...
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Chapter 7

Concavity issue of the GW
approximation, as exemplified
for defects and atoms

This section summarizes, further explains, and exemplifies the article by Bruneval
(2009) and Bruneval (2012a) printed in Appendix D.

1 A systematic inconsistency in defect levels
As previously noted, the description of the electronic structure of defects in
crystal is a stringent test for the exchange-correlation approximations. Break-
ing the translational symmetry with a point defect induces the formation of a
couple of localized electronic states among the numerous delocalized Bloch elec-
tronic states. The electronic structure method one employs has to be reliable
for describing both types of electronic states co-existing in the same system.
Whereas the two limiting cases are well characterized (molecules on the one
hand and perfect crystals on the other hand), the defect situation is much less
studied. Of course, many defect supercells have been performed since the ad-
vent of modern DFT, however there is a lack of reference values to compare
with. Experimental photoluminescence values characterize very accurately the
shallow donors or acceptors, which are precisely the one one cannot calculate in
the supercell setup. Higher accuracy methods, such as Quantum Monte Carlo,
have been so far limited to very small supercells, containing say 10-50 atoms
(Leung et al., 1999; Batista et al., 2006). The situation is even more striking for
GW calculations. Due to the numerical cost of a GW calculation even in a unit
cell, the exploration of the performance of the GW approximation for defects is
just beginning.

In the article Bruneval (2009), I pointed out a apparent problem of GW
calculations when calculating the charge transition level with the DFT+GW
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method described in the previous chapter. In this method, it is assumed that
the GW approximation gives a reliable estimate of the total energy difference
thanks to either of the quasiparticle energies:

Etotal(N)− Etotal(N − 1) = εHOMO(N) = εLUMO(N − 1), (7.1)

where N is the number of electrons in the calculation. There is no theoretical
reason to prefer the evaluation through εHOMO(N) or through εLUMO(N − 1).
Remember the Lehmann energies for the exact Green’s function in Eq. (4.3).
However there are some practical reason to use one rather the other, for instance
to avoid spin-polarized calculations (Rinke et al., 2009). Unfortunately, when
I performed the calculation in practice, I observed a discrepancy between the
two values (Bruneval, 2009). This error was shown, but not commented, in the
previous chapter in Figure 6.3 for the carbon vacancy in SiC. The transition at
the structure V0

C presents two arrows: one from charge +2 to +1, corresponding
to εLUMO(+2), and one from +1 to +2, corresponding to εHOMO(+1). The two
energies differ by about 0.2 eV. This value is not large, however it is systematic
as I observed it for several defects. This difference can be ascribed to the so-
called “concavity error” of the GW approximation, that I am going to define in
the next lines.

2 Concavity/convexity of the exchange-correlation
approximations

As demonstrated by Perdew et al. (1982) in the beginning of the 80’s, the exact
exchange-correlation functional of DFT should present a piece-wise linear be-
havior in between in the integral numbers of electrons, as shown in Figure 7.1.
This result comes from the extension of DFT to fractional numbers of electrons
in an ensemble description. This demonstration has been considered for long
as a very nice theoretical result for the exact DFT, but little influence on the
“real world”, or in other words, on quest for reliable exchange-correlation ap-
proximations. However, nowadays the practical consequences of the piece-wise
linear behavior have been made obvious by the work of the group of Yang in
multiple pedagogical articles (Yang et al., 2000; Mori-Sánchez et al., 2008; Co-
hen et al., 2008). Then the research works using the piece-wise linear idea to
develop exchange-correlation approximation have flourished in the literature, to
fit the U parameter in LDA+U (Cococcioni and de Gironcoli, 2005) or to fit
the hybrid functional parameters (Refaely-Abramson et al., 2012; Atalla et al.,
2013).

Indeed, the exact exchange-correlation functional should be linear in between
the integral numbers of electrons. Discontinuities of the derivative are only
allowed for integers. However in practice, all the usual exchange-correlation
approximations fail badly with this property. All the semi-local approximations
(LDA, PBE, etc.) and also the standard hybrid functionals are all much convex
(see Figure 7.1). The Hartree-Fock approximation is concave instead. The
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Figure 7.1: Schematic behavior of the total energy as a function of the num-
ber of electrons considered as a real number. The exact exchange-correlation
functional should yield a piece-wise linear total energy. In practice, most of
the DFT approximations are convex (positive curvature) and HF is concave
(negative curvature).

deviation from the linear behavior for the fractional numbers of electrons is
not only a benchmark for theoretical physicists: it has practical consequences
on the accuracy of the exchange-correlation approximations. As first shown by
Cohen et al. (2008), the fractional numbers of electrons can indeed be realized
in practical cases: Imagine the example of the H+

2 molecule for large separation
of the protons. It is indeed equivalent to two protons with half an electron on
each. According to the schematic energy from Figure 7.1, Hartree-Fock would
minimize the total energy by having one electron on one side and no electron
on the other side. This is a satisfying picture for the intuition. On the contrary,
the DFT approximations would minimize the energy by having half an electron
on each proton. This is a picture one intuitively does not like much. However
the exact DFT functional should yield the same total energy for both situations.

With the H+
2 example, one realizes that the convex approximations leads

to rather nonphysical situations. So far, the concave approximations are not
problematic and yield the same total energy as the exact functional having the
linear behavior. The problems of concave approximations are less obvious to
figure out. They occur when turning to infinite systems. Let us consider the case
of a polymer made of n units of H2 molecules and let the value of n increase as
shown in Figure 7.2. A convex approximation, as well as the exact functional,
will have the same limit for the ionization energy of an infinite chain, what
ever this energy is evaluated through the total energy difference or through the
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Figure 7.2: Opposite ionization potential −I of a chain of aligned n H2

molecules as a function of n, as evaluated from the total energy difference
(∆SCF procedure) Etotal(0) − Etotal(+) (solid line) or from the HOMO en-
ergy εHOMO(0) (dashed line). HF approximation is plotted with red squares,
whereas PBE functional is plotted with blue circles.

HOMO eigenvalue. For an approximation suffering from a concave behavior,
the two techniques will differ instead. As shown in Figure 7.2, two far apart
evaluations for the HF ionization energy are obtained (∼ 1 eV difference). This
implies that for solid the evaluation of the band gap with the ∆SCF procedure
is to differ from the eigenvalue difference. This would be quite severe problem,
since some calculations, such as for charged defects, requires to compare total
energy differences with eigenvalues (See e.g. Eq. (15)).

It is therefore important to look for exchange-correlation approximation that
are nor convex nor concave. This is the path followed by several recent works
(Refaely-Abramson et al., 2012; Atalla et al., 2013). However, I have followed
the opposite path by asking: Are the known approximations convex or concave?
In particular, is the GW approximation convex or concave?

3 Slight concavity of the GW approximation

3.1 How to measure the concavity/convexity for the GW
approximation

Answering the question of the convexity/concavity of GW is not that straight-
forward, since the GW self-energy only gives access to quasiparticle energies
and not to total energies. Therefore, the simple curvature test that could be
performed with the total energy of PBE or HF cannot be considered here.

However, the properties of the GW quasiparticle energies can also be related
to the convex/concave behavior. As introduced in the beginning of this section,
in Ref. (Bruneval, 2009) I observed that the GW quasiparticle energies experi-
ence a shift when the levels are emptied or occupied. This systematic behavior
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Figure 7.3: Isosurface of the HOMO of the (2 Na2)− system, i.e. localization
of an extra electron added in the system of two distant Na2 molecules, Upper
panel represents the LDA results, whereas the lower panel shows the QSGW
result.

can be linked to the concavity of the GW approximation.
Indeed, the Janak theorem (Janak, 1978) states that the eigenvalues in DFT

and HF can be obtained as derivative of the total energy with respect to the
occupation of the corresponding state. This translates for the particular case of
the frontier orbital (HOMO or LUMO) into

εf =
∂Etotal(N)

∂N
, (7.2)

where N is the number of electrons in the system. In other words, the frontier
orbital energy is the tangent of the total energy curve represented in Figure 7.1.

First of all, the concavity of GW can be appreciated by performing self-
consistency and looking at the frontier orbital when adding an electron in a
system consisting of two well separated subsystems. This is the same numer-
ical experiment as the one proposed by Cohen et al. (2008). In Figure 7.3, I
reproduce the results of Bruneval (2009) obtained within the Quasiparticle-Self-
consistent GW (QSGW ) approximation to the fully self-consistent GW . The
advantage of this self-consistent framework is the constrain of well-defined or-
thogonal wavefunctions, which helps the calculations and also the visualization.
Whereas LDA had favored the situation with half an electron on each subsys-
tem (upper panel), after self-consistency QSGW ends up with one additional
electron on one subsystem and none on the other one. This shows that the
GW approximation in its QSGW flavor in not convex. Then it is most likely
concave, since the self-consistency was initialized with the LDA wavefunctions
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with the HOMO spread on the two molecules and after iterations, the HOMO
wavefunction becomes localized on one single molecule. When initializing the
self-consistency with HF wavefunctions, for which the HOMO wavefunctions is
already localized on one of the two molecules, QSGW HOMO wavefunction re-
mains localized on one molecule. It is a clear sign that the GW approximation is
indeed concave. If it would present the exact straight-line behavior, there would
be no reason to favor the localization of the HOMO against the delocalization
over the two sites.

Secondly, although I have no formal proof for that, I assumed that the Janak
relation can be extended to the Green’s function theory. With this assumption,
the ordering of the eigenvalues should be a sign of the convexity/concavity.
Looking at the schematic representation in Figure 7.1 and assuming that the
quasiparticle energies can be obtained as the derivative of a corresponding total
energy, a convex approximation would satisfy

εLUMO(N) < Etotal(N + 1)− Etotal(N) < εHOMO(N + 1) (7.3)

whereas a concave approximation would have

εLUMO(N) > Etotal(N + 1)− Etotal(N) > εHOMO(N + 1). (7.4)

Of course, the perfect piece-wise linearity would restore equalities.
In Ref. (Bruneval, 2009), I have advocated that the GW approximation is

concave since its quasiparticle energies satisfy the inequality

εLUMO(N) > εHOMO(N + 1), (7.5)

which is a consequence of Eq. (7.4). This was demonstrated for some defect levels
and for the ionization potential of isolated sodium clusters. This calculations
were performed in the supercell geometry subjected to possible artifacts, as
explained in Part II, and I was looking at small effects. That is why I decided to
further assess the results with precise calculations on atoms (Bruneval, 2012a).

3.2 Developing an accurate GW code for isolated molecules
To that purpose, I have developed on my own a GW code for isolated atoms
and molecules based on the favorite quantum chemistry basis set, namely the
Gaussian basis set (Szabó and Ostlund, 1996). This choice was guided by the
existing successful examples of Rohlfing (2000); Blase et al. (2011), which showed
that the GW calculations are feasible and converge with small basis sets.

The GW code I developed, now named molgw, relies heavily on external
libraries so that the most painful parts in the implementation have been avoided.
In a few words, this code is capable of calculating the exact G0W0 result within
a basis set. All the delicate technicalities of the usual GW calculations are
avoided: there is no plasmon-pole model, no numerical frequency integration,
no use of an auxiliary basis set to represent the dielectric matrix. Once the
basis set is selected, then there is only one valid GW result. This statement
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Figure 7.4: Convergence of the evaluation of the ionization potential of the CO
molecule within several approximations, as the function of the basis set size in
the Dunning sets. The zero has been set to the extrapolated ionization potential
within each approximation.

can appear as mild, however when one knows the confused situation for crystal
calculations, this is an appreciated feature. This feature is obtained at the
expense of very cumbersome calculations. To be more precise, the scaling of
the calculations that poses problem, both in terms of CPU time than in terms
of memory. Currently, the calculations are limited to systems containing less
than 300-400 basis functions, which corresponds to accurate calculations for 4-5
atom molecules or loosely converged calculations for 10-12 atoms.

Indeed, one of the first surprises I met was the rather slow convergence rate
of the GW calculations in Gaussian basis, as demonstrated for the CO molecule
in Figure 7.4. Using the correlation-consistent basis sets developed by Dunning
(1989), which are well adapted to extrapolation to the complete basis set limit,
For the CO molecule, the G0W0 energy of the HOMO is obtained with an error
bar below 0.2 eV only by using the “quadruple zeta - triple polarized” basis,
which consists of 140 basis functions with angular momentum up to g (l = 4).
The convergence is noticeably slower that the convergence of the HOMO within
DFT, for instance here within PBE0. However, the slow convergence is not
completely unexpected, when one tries other correlated methods from quantum-
chemistry such as MP2 or coupled-cluster (Szabó and Ostlund, 1996). This is
code I am now able to provide GW results for atoms and small molecules with
a 0.1 eV accuracy.
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Figure 7.5: Deviation from ∆SCF reference for the atom HOMO energy εNHOMO
(open bars) and of the cation LUMO energy (striped bars). The mean value of
the HOMO and the LUMO is displayed with the diamond symbol. The upper
panel compares HF orbital energies to the HF total energy difference. The
lower panel compares GW@HF orbital energies to the RPA@HF total energy
difference.

3.3 Concavity of the GW approximation confirmed with
atoms

In Bruneval (2012a), I have performed a systematic comparison of the HOMO or
LUMO eigenvalues of the atoms and cations against the total energy difference
for the first row atoms to check which of Eq. (7.3) or Eq. (7.4) is fulfilled. In
Figure 7.5, the comparison is performed for both HF (upper panel) and GW
(lower panel). Whereas for HF, which is calculated self-consistently, there is
consistency between the eigenvalues and the total energy, for GW this is much
more delicate. If one had results for the complete self-consistent GW framework
based on the Green’s function itself, everything would be consistent. However
today, besides a few pioneering attempts (Stan et al., 2006; Caruso et al., 2012),
GW results are usually obtained in the non-self-consistent manner G0W0 and
therefore the different formulas for the total energy, Galitskii-Migdal (Galitskii
and Migdal, 1958), Klein (Klein, 1961), or Luttinger-Ward (Luttinger and Ward,
1960) would give different results. For Figure 7.5, I choose to evaluate the self-
energy and the total energy based on HF inputs, which are a rather good guess
for atoms. Then I selected the RPA functional for the total energy (Furche,
2008), which is another name for the Klein functional. The RPA total energy
will be further described in the next section.

Besides for H and He, the LUMO of the cation in red and the HOMO
of the neutral atom always bracket the total energy difference for GW . The
LUMO energy is systematically above and the HOMO energy is systematically
below. This shows that GW indeed satisfies the inequality (7.4) and that GW

76



is a concave approximation. However, by measuring the difference between the
LUMO and the HOMO, one realizes that GW is much less concave than HF.
Furthermore, it appears that the concavity error is smaller for the larger atoms
in the second row (from Na to Ar). Note that the underlying choice of HF for
the G0W0 does not affect the concavity conclusions. I have also tested PBE
based G0W0 with the same final conclusions.

4 Reconciling quasiparticle energies and total en-
ergy differences

In the usual GW calculations, there is no access to total energies. How do we
reconcile the discrepancy between the LUMO of the positively charged ion and
the HOMO of the neutral atom? Which value should be used? There is no
theoretical reason to prefer one of them: none of this two quasiparticle energies
is closer to the total energy difference.

Slater (Slater, 1974) recognized this long time ago and proposed to evaluate
the total energy thanks to the eigenvalue of the frontier orbital, when it is half
occupied. Indeed, if the total energy is not linear for fractional occupation
numbers, then the first order correction is a second order term in N . In this
second order approximation, it can easily been shown that the derivative of
the total energy at a half integer is equal to the total energy difference (See
Figure 7.1). This is the celebrated Slater one-half procedure. The extension of
the GW approximation to fractional occupation number is not straightforward
in my opinion. For example, the generalization of the RPA total energy to
fractional occupation number is detailed in (Yang et al., 2013) and it is far from
trivial.

I found much easier to invoke another combination inspired by Slater’s trick.
Under the same approximation as Slater (the total energy is a second order
polynomial N in between integer), the total energy difference can alternatively
be obtained as

Etotal(N + 1)− Etotal(N) ≈ 1

2
[εLUMO(N) + εHOMO(N + 1)] . (7.6)

I propose this expression in Bruneval (2009) to reconcile the different evaluations
of defect transition levels in GW . The same expression was proposed by Komsa
et al. (2010) in the same period in the context of hybrid functionals.

Using this “mean value trick”, I was able to improve much the agreement
between the ∆SCF procedure and the quasiparticle energies in GW/RPA for
atoms. In Figure 7.5, the mean value between the LUMO of the cation and the
HOMO of the atom is plotted with the black diamond. Whereas the agreement
with the total energy difference is still not perfect for the first row atoms, it
becomes rather good for the second row. There are many possible origins for
the discrepancy: a non purely second order polynomial behavior of the total
energy as a function of N , the lack of self-consistency (and therefore the spread
of all the possible total energy formulas)... The mean value trick improves much
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the consistency between the total energy and the eigenvalues, which does not
necessarily mean an improvement with respect to experiment.

Turning back to defect calculations, the previous considerations advocate for
performing two GW calculations for each charge transition. For instance in the
case of VC in SiC studied in the previous chapter, Figure 6.3 shows the value
for the LUMO in charge state +2 and the HOMO in charge +1, drawn with the
upward (orange) and downward (pink) arrows. The average between the two
evaluations will give the most consistent estimate for the transition εv(2+/1+).
I used this approach in my subsequent GW study (Bruneval and Roma, 2011).
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Chapter 8

RPA total energies applied to
defects

This section summarizes the article by Bruneval (2012c), printed in Appendix D.
I take this opportunity to provide technical details that did not fit the length
requirement of the original paper.

I insisted in the previous chapters that it would be highly desirable for
defects to have total energies from the GW framework. The main issue is not
to have a formula for the total energy, it is rather to have only one formula!
There are indeed several formulas for the total energy obtained out of a Green’s
function. However, these formulas give the same result only when the complete
self-consistency on the Green’s function has been reached. As in practice, there
exists almost no study in solids with self-consistency on the Green’s function.
One can anticipate that this situation will persist for long for the defects, due
to the supercell size required to properly account for defects.

1 Random Phase Approximation to the total en-
ergy

In the recent years, the Random Phase Approximation (RPA) formula for the
total energy has started being used for real crystal calculations. This formula is a
good compromise between the simplest formula, namely Galistkii-Migdal (Galit-
skii and Migdal, 1958), and the more intricate formulas, such as Luttinger-Ward
(Luttinger and Ward, 1960) or ABL (Almbladh et al., 1999). The Galitskii-
Migdal is not a stationary point with respect to the Green’s function and there-
fore it is highly sensitive to the input in non-self-consistent calculations. On the
contrary, the Luttinger-Ward and even better the ABL formulas are believed
to be much stationary, which implies a weak sensitivity to the input Green’s
function, however at the expense of rather involved formulas. The RPA expres-
sion for the total energy (also known as the Klein formula (Klein, 1961) or as
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Figure 8.1: Feynman diagrams contained in the GW self-energy (upper panel)
compared to the Feynman diagrams contained in the RPA correlation energy
(lower panel).

the Pines-Nozières formula (Pines and Nozères, 1966)) is good compromise: it
is stationary to some extent and it is not impossible to evaluate in realistic sys-
tems. Another feature of the RPA total energy has attracted a lot of attention:
its ability to capture the van der Waals interactions (Dobson and Wang, 1999),
which are beyond the standard DFT approximations. However, so far, all the
reported applications of the RPA functional have been limited to crystal unit
cells or at most to surfaces (Schimka et al., 2010).

The relation between the GW self-energy ΣGW and the RPA correlation
energy, label here ΦGW is quite obvious in terms of Feynman diagrams, as shown
in Figure 8.1. The GW self-energy is indeed Φ-derivable in the Baym-Kadanoff
sense (Baym and Kadanoff, 1961):

Σ(r, r′, ω) =
δΦGW

δG(r′, r,−ω)
, (8.1)

which ensures that many conservation properties are indeed fulfilled by the GW
self-energy. In terms of diagrams, the derivation with respect to G consists in
removing one propagation line in ΦGW . Owing to the numerical prefactors in
ΦGW , the derivative of the products gives precisely the GW expansion of the
self-energy. Dropping the space and frequency indexes for clarity, the RPA
correlation energy can be written as

ΦGW = −1

2
Tr
[
vχ0 +

1

2
(vχ0)2 +

1

3
(vχ0)3 + . . .

]
, (8.2)

where Tr stands for the trace and where the ring diagrams GG in Figure 8.1 are
the independent particle polarizability χ0 and the wiggly lines are the Coulomb
interactions v. Inside the square brackets of Eq. (8.2), one can recognize the
expansion series of a logarithm. This gives the final expression for ΦGW :

ΦGW = −1

2
Tr [ln(1− vχ0)] . (8.3)

This is this formula expressed in plane-waves that I implemented in the Abinit
code. The formula for the correlation energy in Eq. (8.3) could have been
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Figure 8.2: Convergence of the RPA correlation energy of a single helium atom
in a box with respect to the cutoff energy for the plane-wave representation
of χ0GG′ . The black square are actual calculations. The dashed line is the
extrapolation fit proposed by Harl and Kresse (2008).

obtained from the integration of the coupling constant (adiabatic connection
fluctuation dissipation theorem) as pedagogically explained in Refs. (Fuchs and
Gonze, 2002; Niquet et al., 2003).

In practice, the calculations are performed non-self-consistently. For in-
stance, if based on LDA, the total energy finally reads

ERPA
total = ELDA

total − ELDA
xc + Ex + ΦGW , (8.4)

where Ex stands for the exact-exchange energy

Ex = −1

2

∑
ij

fifj

∫
drdr′φi(r)φ∗i (r

′)
1

|r− r′|φj(r
′)φ∗j (r). (8.5)

Unfortunately, the RPA total energy presents a very slow convergence be-
havior with respect to the number of plane-waves for χ0GG′(q, ω) and with
respect to the number of empty states. The slow convergence is illustrated in
Figure 8.2 for an isolated Helium atom. Without a fitting procedure, it would

Table 8.1: RPA correlation energy of bulk silicon at experimental lattice con-
stant a = 10.26 bohr in eV/atom from different published works. QMC corre-
lation energy is also provided for comparison.

Marini et al. Nguyen et al. Harl et al. This work Hood et al.
(2006) (2009) (2008) (1998)

RPA QMC

Ec -5.44 -6.12 -6.13 -6.094 -4.08
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Figure 8.3: Full range Coulomb interaction 1/r compared to the long-range
only interaction erf(r/rc)/r and the short-range only interaction erfc(r/rc)/r.
Here rc has been set to 1 bohr.

be simply impossible to extract reasonable values: the largest calculations are
still 8 % off from the extrapolated value. Note that the convergence of the ab-
solute correlation energy is also an issue within Gaussian basis set. With the
code molgw I described in the previous chapter the correlation energy changes
by 1 mHa when moving from quintuple zeta (cc-pV5Z) to sextuple zeta basis
set (cc-pV6Z)! The Gaussian basis set correlation energy (82.8 mHa) is slightly
lower than the extrapolated plane-wave value.

The difficulty to converge the calculation explains the spread of the cal-
culated correlation energies in solids. In Table 8.1, I summarized the various
published data for the correlation energy of silicon within RPA based on LDA
inputs, most of them are based on norm-conserving pseudopotentials, with the
exception of Harl and Kresse (2008), which employs PAW. Note that the RPA
correlation energy is noticeably lower than the QMC estimate. This is a known
failure for the RPA correlation expression, which is well documented for the
homogeneous electron gas (Vosko et al., 1980).

Owing to the convergence issues already for unit cells, it appears impossible
to perform RPA correlation energy calculations for supercells containing a defect
(50-100 atoms at least). The application of RPA for large cells would require
further approximations. In Bruneval (2012c), I made use the range-separation
idea to that particular aim.

2 Range-separation for RPA
The powerful concept of range separation has been introduced by Toulouse et al.
(2004a,b). It allows one to treat each range with the most suitable theory. In
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the original works, the idea was to treat the long-range with the best theory for
long-range, wavefunctions methods, and the short-range with the best theory
for short-range, DFT. The range separation is generally introduced with the
same functional form as in Ewald summations(Ewald, 1921):

1

r
=

erf(r/rc)
r

+
erfc(r/rc)

r
, (8.6)

where the range-separation is governed by the screening length rc = 1/µ, using
the notations of Toulouse et al. (2004b). The long-range/short-range splitting
is shown in Figure 8.3.

The range separation was already employed in Toulouse et al. (2009) for
small molecules. The idea of this work lies in the fact that RPA functional
overestimates the correlation energy (see the correlation energy of silicon in
Table 8.1 for instance), mainly due to errors in the short range part. In order
to fix that deficiency, these authors have retained RPA for the long-range part,
which is responsible for the nice account of the van der Waals interactions and
selected a DFT functional based on the generalized gradient approximation for
the short-range. Their idea is to cure the error of RPA in the short-range by
introducing a new functional.

Incidentally, the range-splitting has some beneficial numerical consequences
for the plane-wave approaches for periodic calculations. Indeed in reciprocal
space, the long-range interaction becomes short-ranged in G. The Fourier trans-
form of Eq. (8.6) reads

4π

G2
=

4π

G2
e−r

2
cG

2/4 +
4π

G2

(
1− e−G2/4r2c

)
(8.7)

In G space, the long-range Coulomb interaction has an additional exponential
decaying factor. Using this mathematical fact, the convergence with respect to
the plane-wave cutoff used to represent the non-interacting polarizability χ0GG′

will be far superior when using a long-range interaction, since in Eq. (8.3), χ0

is multiplied by the Coulomb interaction. The larger the cutoff radius rc the
faster the expected convergence.

In Bruneval (2012c), I make use of the numerical advantages of the range
separation to accelerate the RPA convergence. My purpose is not to define a
new functional as in Toulouse et al. (2009), but simply to reproduce the RPA
correlation energy at smaller expense. In this approach, the cutoff radius rc is to
be considered as a convergence parameter: when rc tends to zero, the original
RPA results is fully recovered. The proposed expression for the total energy
reads

ERPA
total = ELDA

total − ELDA
x − ELDA beyond RPA

c − ELDA RPA
c (rc) + Ex + ERPA

c (rc).
(8.8)

ERPA
c (rc) is obtained from the explicit calculation of Eq. (8.3) with the Coulomb

interaction v replaced by the long-range only interaction. The LDA calculation
for the homogeneous electron gas RPA long-range energy ELDA RPA

c (rc) is only
missing piece in the energy.
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Figure 8.4: RPA correlation energy density in the homogeneous electron gas
as a function of rs, the Wigner radius. The RPA correlation energy density has
been calculated for the Coulomb interaction 1/r and for the long-range only
interaction erf(r/rc)/r with rc = 2 bohr.

The long-range RPA correlation energy density for the homogeneous electron
gas can be obtained by straightforwardly modifying the Coulomb interaction in
the RPA expression of von Barth and Hedin (1972). Then with a numerical
integration, the correlation energy density can be obtained for selected values
of the electronic density, or equivalently of the Wigner radius rs (the radius of
the sphere enclosing one electron). Finally, with the rational fraction proposed
by Goedecker et al. (1996), the correlation energy density is interpolated to any
value of rs:

εrcc (rs) = −a0 + a1rs + a2r
2
s + a3r

3
s

rs + b2r2s + b3r3s + b4r4s
. (8.9)

A set of coefficients is obtained for each choice of the cutoff radius rc. The
performance of the interpolation is shown in Figure 8.4. In the low density
limit (large rs), the difference between the full RPA and the long-range only
vanishes. In the high density limit (low rs), the long-range only correlation
energy vanishes, whereas the RPA correlation diverges. The turning point in
the long-range only correlation density lies in the vicinity of rs = rc.

With this machinery, I am now able to address realistic calculations. Several
solids have been studied in Bruneval (2012c) using much lower cutoff energies,
but I would like to focus now on defects.

3 RPA results for the self-diffusion in pure silicon
The main interest of the previous technical development is the possibility to cal-
culate larger supercells. In my study about the self-diffusion in silicon (Bruneval,
2012c), I had to calculate supercells as large as 216 atoms. This system size
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Figure 8.5: Partial review of the experimental literature concerning the silicon
vacancy and self-interstitial diffusion activation energy represented as a function
of time. The cited papers are (Stolwijk et al., 1983; Car et al., 1985; Dannefaer
et al., 1986; Würschum et al., 1989; Bracht et al., 1995, 1998; Ural et al., 1999;
Bracht and Haller, 2000; Voronkov and Falster, 2006; Bracht et al., 2007).

was absolutely required for the silicon vacancy. It is well documented that the
silicon vacancy (even when they are charge neutral) converge very slowly with
respect to supercell size. In particular, the too small supercell sizes prevents the
formation of the physical Jahn-Teller distortion (Probert and Payne, 2003).

I first decided to work on the self-diffusion in silicon as a benchmark for
the theory exposed in the previous section. However for several decades, the
experimental values for the diffusion in silicon have been constantly revised, as
illustrated in the literature time-line in Figure 8.5. It is difficult to extract secure
values that would be the benchmark reference for my newest calculations. As
a consequence, I also decided to perform hybrid functional calculations within
the HSE functional (Heyd et al., 2006), as they were surprisingly missing also
in the literature.

The RPA functional allows one to obtain total energies. However, to de-
scribe defects that breaks the translational ordering of crystal, having forces
to relax the structures is also necessary. Within RPA, there is no expression
for forces, at least nowadays. I therefore performed most of my calculations
on LDA or PBE relaxed structures or saddle points. The only exception is the
silicon vacancy which experiences the strong Jahn-Teller distortion that LDA
or PBE functionals have difficulty to capture. I therefore preferred to optimize
the energy by varying manually the two bond lengths involved the Jahn-Teller
distortion and relaxing the other degrees of freedom with standard DFT. Of
course, nowadays I would rather relax all the structures within HSE. But at the
time when I performed the calculations, the HSE capable codes were still rare
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and slow.
As explained in Part I, the self-diffusion activation energy is obtained as the

sum of the barrier energy, which hinders the diffusion, and the formation energy,
which governs the concentration of migrating defects [see Eq. (22)]. Further-
more, the self-diffusion can be mediated by self-interstitials or by vacancies. In
a self-diffusion experiment, it is impossible to distinguish between the formation
and the migration, or between self-interstitials and vacancies. To that respect,
the calculations provide many useful intermediate energies.

The self-diffusion energies are summarized in Table 8.2. These data contain
three original striking features. First of all, the HSE results are good agree-
ment with the RPA results. However, they depart noticeably from the LDA
or PBE results. Second, (not visible from the table) the self-interstitial mi-
gration mechanism is changed between LDA/PBE (hexagonal to hexagonal)
and HSE/RPA (hexagonal to split), with potential consequences on the corre-
lation factors (Posselt et al., 2008). Third, the activation energy of vacancies
and interstitials are not so different. This is quite strong disagreement with the
experimental guesses. However the experimental estimate of the vacancy contri-
bution are only indirect (total diffusion minus self-interstitial diffusion) and are
subjected to debate. Note that, as shown in Figure 8.5, the vacancy activation
value has been constantly reevaluated (as higher) for the last two decades.

It is quite satisfactory to see that my first calculations have been later con-
firmed (within 0.2-0.3 eV) by several other works (Gao and Tkatchenko, 2013;
Śpiewak and Kurzydłowski, 2013; Kresse, 2014).
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Table 8.2: Summary of the calculated energies in Ref. (Bruneval, 2012c) for
the description of the self-diffusion in silicon. The experimental values have
extracted from (Voronkov and Falster, 2006; Bracht et al., 2007)

LDA PBE HSE RPA Expt.

Vacancies
Ef 3.58 3.72 – 4.33
Em 0.40 0.28 0.40 0.58
EA 3.98 5.00 – 4.91 4.33-4.56

Self-interstitials
Ef 3.48 3.67 4.40 4.49
Em 0.12 0.21 0.47 0.77
EA 3.60 3.88 4.84 5.26 4.95-5.15
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Part IV

Outlook
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In this final part, I provide a few clues for what could be my research ac-
tivities in the next years. Some leads are already been conducted right now,
some other are left for the future. Some follow a straight-line extrapolation of
my past activities, some would require deeper changes.

1 Technological applications
This memoir has focused on the methodological developments of my recent
activity. However, this activity has always been accompanied with applications
to technological materials. Most prominently, I have been constantly working
on two particular materials SiC and ZnO having applications in the domain of
the energy production/saving.

The cubic SiC is seriously considered as a coating materials to encapsulate
the nuclear fuel (UO2) for next generation nuclear plants owing to his resistance
to irradiation and to his high thermal conductivity. Besides the nuclear applica-
tions, hexagonal SiC (4H-SiC) is also used for electronics and maybe tomorrow
for quantum computing (Castelletto et al., 2014). I have co-authored a series of
papers on defects in cubic SiC (3C-SiC) (Bruneval, 2009; Bruneval and Roma,
2011; Bruneval, 2012b). I plan to keep on working on that material, especially
for its intricate spin-states I will further describe in Section 3.

ZnO is already been used in the thin film photovoltaic cells. The n-type
ZnO is used as a transparent conductive oxide for the front electrode. However
its usage would be even more important if one could also obtain the reverse
doping, namely p-type ZnO. I have devoted quite some time so far to the study
of p-type doping in ZnO, with increasing accuracy methods Cui and Bruneval
(2010); Gabás et al. (2011); Petretto and Bruneval (2014). Unfortunately, the
conclusions of the ab initio calculations have constantly pointed out that p-
type doping cannot be achieved. I guess most of the obvious doping elements
have been tried, both experimentally and theoretically. I have the feeling that
the only chances of success rely now in heterodox solutions. To that aim, the
systematic searches techniques developed in many different groups in the world,
such as the “Materials project” just to name one, appear as the only viable
route.

2 Improving the DFT+GW with hybrid function-
als for the DFT level

In the direct continuation of the combination of GW with DFT for defects,
one straightforward improvement of the technique would be the introduction
of hybrid functionals in the DFT level. The DFT+GW (Rinke et al., 2009)
has been so far always applied in combination with the old-fashioned DFT
functionals, such as LDA or GGA Martin-Samos et al. (2010); Bruneval and
Roma (2011).
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Introducing much more accurate hybrid functionals would have many bene-
fits:

• The perturbative G0W0 procedure performs better in general when start-
ing from hybrid functionals, since G0W0 employs the starting wavefunc-
tions and eigenvalues without any further self-consistency. The impor-
tance of a better starting point has been demonstrated for complex ox-
ides (Isseroff and Carter, 2012) and for molecules (Bruneval and Marques,
2013).

• As the expression of the hybrid functionals is closer to GW (they both
include some content of exact exchange), the problematic combination of
GW and DFT (GW for charge changes and DFT for structural changes)
can be believed to be more consistent.

• The relaxed structure are arguably better within hybrid functionals than
within semi-local functionals. For instance, the Jahn-Teller distortion are
difficult to obtain within PBE (Bruneval, 2012c)

• The GW formation energies are finally obtained by considering a DFT
formation for a given charge state as the reference. The formation energy
within hybrid functional will certainly be more accurate.

With the availability of hybrid functional codes, this step is now within reach
with very little effort. Of course, careful comparison for a wide range of defects
should be performed to evaluate the need to perform the final GW step on top
of the already rather accurate hybrid functional calculations.

3 Spin states in open-shell defects
There are a few interesting defects, whose electronic structure cannot be de-
scribed by standard DFT and GW . These two frameworks are based on a
mean-field assumption that imposes the electronic wavefunctions to be a single
Slater determinant. In isolated systems, there are many well documented sit-
uation in which the single Slater determinant is insufficient. For instance, the
stretched H2 molecule (with only two electrons) already shows the failure of
the single Slater determinant assumption. The stretched H2 would minimize its
energy by having one electron on each proton. When performing spin-restricted
calculations, the spin-up and spin-down wavefunctions are constrained to re-
main equal and as a consequence the energy does not tend correctly to twice
the isolated hydrogen value when the distance between the protons goes to in-
finity. A solution would be to break the spin restriction constraint: then the
correct limiting energy is obtained for large separations, however that the total
spin (S2 observable) is incorrect: it is not any more a pure spin singlet. This
problem, named “static correlation” by quantum chemists, is also present in the
context of point defects.
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Several technologically relevant defects experience the static correlation prob-
lem. This generally occurs when several states with the same energy can be
populated or not. In other words, one has to deal with an open electronic shell.
Let me name a few defects that are affected by this puzzling situation. The
color of gemstones is generally given by d element impurities in the matrix. For
instance, in ruby, these are chromium impurities in alumina Al2O3. The optical
transitions giving rise the red color originate from inner shell Cr3d electronic
transitions (which are dipole forbidden transitions). An accurate description
of these d states is required, however the single Slater determinant can only
capture the high spin configuration. All the other spin arrangements are out
of reach. The same open-shell situation however happens without the need of
d electrons. A single vacancy in diamond or in SiC has a multi-determinental
ground-state. In the quantum computing field, researchers plan to use the NV−
defects in diamond (a complex made of a vacancy and of a nitrogen impurity)
to store the quantum bit. The quantum computing experiments play with the
long-lived triplet spin-state that cannot spontaneously decay into spin singlet.
All these situations can only be described with several Slater determinants.

As of today, these defects are not treated properly. I would like to devote
some efforts to the incorporation of multi-determinental techniques in the defect
context. Whereas the solution to static correlation exists for atoms and small
molecules, namely with configuration interaction (CI) and related approaches,
they cannot be used immediately for defects in supercells, which contains several
hundreds of electrons. I think that defining effective interactions could make the
accurate quantum-chemistry calculations on a smaller system feasible. There
exists techniques to evaluate the effective interaction from ab initio calculations.
Constrained Random Phase Approximation is one of them (Aryasetiawan et al.,
2004). I have recently participated to a study on that particular topic (Amadon
et al., 2014). With reliable effective interactions, one could in principle treat
the correlation only for those defect orbitals. This proposed approach bears
similarities with a simplified version of Dynamical Mean-Field Theory (DMFT)
(Georges et al., 1996).

4 Shallow defects
Besides very rare studies(Zhang et al., 2013), the shallow defects are always
disregarded in ab initio supercell studies. The accurate evaluation of the charge
transition level of these defects is of high technological relevance, since the ef-
ficiency of doping is tightly related to this quantity. But as the defect wave-
function is extended, it is almost impossible to fit it in a tractable supercell.
Furthermore, to compete with experimental measurements, the requested accu-
racy for the charge transition levels is much higher that for deep defects. The
targeted accuracy should yield error bars of less than 50 meV.

In my opinion, it is very important to address this family of defects. However
this cannot be done with brute force calculations. A change of computational
framework should happen. Right now I can foresee two interesting possibilities.

91



0 2 4 6 8 10 12

Inter-electron distance  ( bohr )

0.0

0.2

0.4

0.6

0.8

1.0

C
o

u
lo

m
b

 i
n

te
ra

c
ti
o

n
 p

ro
p

o
rt

io
n

B3LYP

PBE0

BH&HLYP

HSE06

CAM-B3LYP

tuned CAM-B3LYP

Figure 8.6: Coulomb interaction proportion α + βerf(ωr) effectively used by
different hybrid functionals of DFT as a function of the inter-electron distance
r. On this plot, HF would be an horizontal line at 1.0 and LDA, PBE would
be an horizontal line at 0.0. Hybrid functionals offer a wide variety of choice in
between these two extremes: full range, short-range, or long-range.

Either the order N electronic structure methods (Goedecker, 1999) will become
competitive and reliable, or the Green’s function methods, such as KKR (Ebert
et al., 2011), will allow the clean treatment of dopants considered as impurities.
Considering my own background in Green’s function theory, I may consider
devoting myself to the latter possibility in the future.

5 Confronting hybrid functionals with GW

Hybrid functionals have still a limited accuracy for solids. Many authors (in-
cluding me) resort to a further fitting of the exact exchange mixing parameter α
in order to improve the description of a chosen physical quantity (in general the
band gap). On the other hand, the GW calculations are usually more reliable,
but at a much higher computational cost.

Hybrid functionals and GW approximations share some common aspects.
Both include exact exchange and then reduce it with a screening procedure. In
GW calculations, the screening is calculated ab initio within RPA. The obtained
screening contains “local-fields” (it is a function of two separated space indexes
r and r′) and it is dynamical (the screening is more efficient around the plasmon
frequency for instance). The hybrid functional screening is much cruder. Each
hybrid functional flavor (e.g. B3LYP, PBE0, HSE06, TD-CAM-B3LYP etc.)
makes a choice for the screening amount and keeps it constant whatever the
material or the molecule. As plotted in Figure 8.6, PBE0 chooses to consider
25 % of the exact exchange, which means a 75 % screening. B3LYP selects a
20 % amount of exact-exchange. HSE06 and CAM-B3LYP are more involved
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since they introduce also a range-dependent screening. HSE06 retains only 25 %
of short-range exact-exchange and 0 % of long-range. TD-CAM-B3LYP makes
the reverse assumption: the full long-range exact-exchange is retained and a
very strong screening is assumed at short-range (Okuno et al., 2012). In other
words, all the hybrid functionals are not dynamic and do not include local-fields
(they are a simple function of |r− r′|)

I think the careful comparison between GW and hybrid functionals could
induce improvements and introduce novel ideas in two directions. As the hy-
brid functionals are already very successful, their approximations should bear
some meaningful physical content. Obtaining information from the successes of
hybrid functionals should help speeding up the GW calculations by designing
approximations to GW that anyway conserve most of the physical content. The
direction goes towards an improvement of hybrid functionals, making them more
complicated but more accurate. By comparing GW and hybrid functionals, it
could bring some of the missing material dependence in the framework of hybrid
functionals.
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The ab initio calculation of charged defect properties in solids is not straightforward because of the delicate
interplay between the long-range Coulomb interaction and the periodic boundary conditions. We derive the
projector augmented-wave (PAW) energy and Hamiltonian with special care taken on the potentials from the
Coulomb interaction. By explicitly treating the background compensation charge, we find additional terms in
the total energy of the charged cells and in the potential. We show that these background terms are needed
to accurately reproduce all-electron calculations of the formation energy of a charged defect. In particular, the
previous PAW expressions were spuriously sensitive to the pseudization conditions and this artifact is removed
by the background term. This PAW derivation also provides insights into the norm-conserving pseudopotential
framework. We propose then an alternative definition for the total energy of charged cells and for the Kohn-Sham
potential within this framework that better approximates the all-electron results.

DOI: 10.1103/PhysRevB.89.045116 PACS number(s): 71.15.Dx, 71.55.−i

I. INTRODUCTION

In order to calculate the properties of charged defects in
semiconductors, of polarons in insulators, or of isolated ions,
it is often required to consider charged systems in ab initio
calculations. The combined use of charged simulation cells
and of periodic boundary conditions leads to intricacies that
require a lot of care [1–4]. First, a truly charged periodic system
would have an infinite energy. This problem is circumvented
by adding a compensating background charge to restore the
global charge neutrality. Second, even with a compensating
background, the electrostatic potential is still not uniquely
defined. Indeed, the electrostatic potential induced by a lattice
of point charges is a conditionally convergent series. This
complicated mathematical behavior unfortunately leads to
many delicate consequences in solid-state physics. One famous
example is the dependence of the Madelung constant upon the
shape of the truncation of the Coulomb series [1]. Another
occurrence of this phenomenon is the well-known dependence
of the work function upon the surface type [5].

In practical ab initio implementations, the subtleties related
to the definition of the electrostatic potential are hidden
deeply, owing to the choice of the Ewald summation technique
together with the convention of zero average potentials
[3,6]. This is of course an arbitrary choice. However, once
this convention has been chosen, it has to be consistently
propagated in the different electrostatic terms of the Hamilto-
nian: the ion-ion repulsion, the electron-ion attraction, and
the electron-electron repulsion. For the all-electron (AE)
methods that consider straightforwardly the physical nucleus
attraction potential Z/r (in atomic units), this is not much
of a problem. The situation is more complicated for the
plane-wave methods using pseudopotentials. The valence

electrons do not experience the bare ionic potential, but rather
a smooth pseudopotential that induces an extra term in the
total energy, namely, the difference between the average bare
potential and the average pseudopotential [1,7]. This is the
origin of the so-called “Zα” term, first derived by Ihm and
co-workers [8].

The situation becomes even more complex when turn-
ing to the projector augmented-wave (PAW) method. The
PAW method, introduced by Blöchl [9], is an improvement
over the pseudopotential approach. Owing to the PAW
transformation, the pseudo-wave functions are mapping the
true AE wave functions. The PAW bears many similarities
with pseudopotentials, as demonstrated a few years later by
Kresse and Joubert [10]. Most noticeably for our discussion,
the pseudo-wave functions experience a pseudopotential,
which requires a subtle treatment of the compensating
background.

In this paper, we demonstrate that the current PAW total
energy and Hamiltonian do not incorporate the compensating
background contribution in a consistent manner. Extra terms
have to be added to the potential of any system and to the
energy of charged systems. It may appear counterintuitive that
the origin of the potentials may have an effect on the physical
properties. However, we show that the formation energy of a
charged defect is indeed affected by an inconsistent treatment
of the background. Although potential alignment techniques
have been devised to circumvent the problem [11–14], a
unanimous agreement in the literature about a unique definition
that would work whatever the nature of the charged defect
is still lacking. Only with these terms properly included
could the PAW results be independent from the details of the
PAW pseudopotential and could they adequately reproduce the
reference AE calculations. As a by-product, we also propose
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a modification of the total energy in the norm-conserving
pseudopotential framework.

The paper is organized as follows: In Sec. II, we review the
peculiarities of the Coulomb interaction in periodic systems.
In Sec. III, we derive the PAW equations with a proper account
of the compensating background density. Section IV provides
the applications: the validation of the additional potential
and energy terms by comparing to AE calculations and an
application to a highly charged defect. Section V is devoted to
the extension to the norm-conserving framework.

We will work in atomic units of length (1 bohr = 1),
energy (1 hartree = 1), and action (� = 1). However, two
conventions for the atomic unit of charge are possible. While
the common choice is to select a negative sign for the electronic
charge, so that e = −1 (e.g., a charged Li vacancy in LiH is
negatively charged), on the contrary, in the PAW literature
an electron is given a positive charge, so that e = +1 [see,
e.g., Ref. [10], shortly after Eq. (9)]. Such a choice does not
affect the quantities in which two charges are multiplied by
each other, namely, all contributions to the energy, as detailed
below. However, it does have an influence on the sign of the
electrostatic potential. Still, the potential felt by the electrons
(e.g., the one present in the Schrödinger equation), obtained by
multiplying the electrostatic potential by the electronic charge,
is free of such a convention problem.

In Sec. IV, dealing with applications, we rely on the usual
convention (e = −1). For the other sections, we avoid the
problem of convention, either because the relevant quantities
are invariant upon a charge sign change, or because we refer to
the potential felt by the electrons (electronic potential) instead
of the electrostatic potential.

II. COULOMB INTERACTIONS IN SOLIDS

To highlight the role of the different Coulomb interactions
in a solid, the total energy E of a unit cell of solid can be
grouped as different contributions to

E = T + ECoul + Exc, (1)

where T is the kinetic energy, ECoul the Coulomb energy,
and Exc the exchange-correlation energy. In the present paper,
we focus on the Coulomb term; the details of the other two
terms will not be discussed any further. With these notations,
the Coulomb energy gathers all the electrostatic interactions
in the solid: the electron-electron interaction (also named
the Hartree energy), the nucleus-nucleus interaction, and the
electron-nucleus interaction [also referred to as the external
potential in the density-functional theory (DFT) language].

A. Coulomb interaction

In the following, an extensive use of Coulomb integrals,
potential, and energy will be necessary. Let us introduce some
useful notations here.

The Coulomb interaction between charge densities n1 and
n2 is defined as

〈n1,n2〉 =
∫∫

dr1dr2n1(r1)
1

|r1 − r2|n2(r2), (2)

where the integrals run over the complete space. The Coulomb
interaction is linear, symmetric, and positive definite. It is then
a scalar product.

The potential created by a charge density n(r) is obtained
from the Poisson equation, which reads

vH [n](r) =
∫

dr′ n(r′)
|r − r′| . (3)

The potential is obviously linear with respect to its
argument n.

The Coulomb self-energy E[n] of charge distribution n

reads

E[n] = 1
2 〈n,n〉. (4)

The factor 1
2 comes from the double counting of the interac-

tions. This is the energy of the entire system. Note that this
Coulomb self-energy could also be obtained from the potential

E[n] = 1

2

∫
drn(r)vH [n](r). (5)

When we turn to periodic system, it is more convenient to
work with the energy per unit cell, E[n]/NR, where NR stands
for the number of unit cells contained in the full solid.

As explained in the Introduction, the ab initio imple-
mentations in periodic solids generally rely on the Ewald
technique [4,6,15], which presents several subtle points due
to the long-ranged Coulomb interaction 1/r .

The Ewald technique proposes to evaluate the potential of
a lattice of point charges with a compensating background:

∑
R

δ′
R(r) =

[∑
R

δ(r − R)

]
− 1

�
. (6)

R stands for the lattice vectors and � for the unit cell volume.
Here and below, we emphasize that a charge distribution is
charge neutral by adding a prime. The direct solution of the
Poisson equation for this charge density is impossible, since
the lattice of point charges would induce a semiconvergent
series, the value of which is undefined.

Using the following short-range/long-range decomposition,

1

r
= erfc(ηr)

r
+ erf(ηr)

r
, (7)

the potential can be split into two contributions. The value
of η does not influence the final result and can be tuned
for numerical convenience. After some algebra, the potential
created by the charge density of Eq. (6) can be written
as the sum of two absolutely converging series up to a
constant A:

vH

[∑
R

δ′
R

]
(r) =

∑
R

erfc(η|r − R|)
|r − R|

+ 4π

�

∑
G �=0

e−G2/4η

G2
eiG·r + A. (8)

The first term in real space arises from the short-range
interaction, whereas the second term arises from the long-
range part and is conveniently evaluated in reciprocal space.
In Eq. (8), there should be an additional dipole term which
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is disregarded in the Ewald sums. In other words, this
corresponds to immersing the solid inside a metallic cavity that
would perfectly compensate the global dipole of the considered
solid. Furthermore, the choice for the value of A is purely
conventional. In general, the average value of vH is set to zero
and consequently A = − π

η2�
.

Within these conventions, the energies and potentials of
neutral and charged solids are completely fixed. We insist that
the choice of A is conventional. However, once the conventions
are settled, the calculated energies and potentials should not
depend on the ab initio calculation technique: In practice,
PAW and AE should produce the same results. Furthermore,
for charged systems it is customary to postprocess the results
with so-called charge corrections [11–14,16,17]. It should be
noted that the correction schemes also use the Ewald technique
with a fixed convention for the value of A. This convention,
however, rarely explicitly stated, is in all practical cases the
zero average convention. It is then important that the same
convention is used for both the electronic structure calculation
and the postprocessing scheme.

B. The physical densities and the background compensated
densities

In a solid, there are two charged particles: the electrons
and the protons. The electrons will be treated quantum
mechanically, whereas the protons will simply act as point
charges. Furthermore, it is also convenient to distinguish the
core electrons from the valence electrons.

In a solid, all the densities are periodic: They are unchanged
by a translation of any lattice vector R. Then, the valence
electron density n integrates to Nv per unit cell,

1

NR

∫
drn(r) = Nv. (9)

All the integrals in this paper run over the whole solid.
The quantities per unit cell are readily obtained by dividing
by NR.

The core electron density nc can be written as a sum over
atomic sites:

nc(r) =
∑
Ra

nRa
c (r) (10)

=
∑
Ra

na
c (r − R − τa), (11)

where τa is the position of atom a in the unit cell. Here and
consistently in the following, the densities with superscript
Ra are referred in the solid coordinates, whereas the densities
with superscript a have the origin in the position of atom
a. The core density is most commonly kept frozen in the
atomic configuration within the PAW framework. The atomic
core densities na

c are then considered as spherical, na
c (r), and

are obtained from the atomic data file in general. The core
density integrates to Nc electrons per unit cell, so that the total
electronic density n + nc integrates to Nv + Nc = N in a unit
cell.

The charge density of the nuclei is a sum of point charges:

qZ(r) =
∑
Ra

qRa
Z (r) (12)

=
∑
Ra

−eZaδ(r − R − τa). (13)

Note that the latter definition is independent of the choice of
sign for e, as discussed at the end of the Introduction. In order
to link with the PAW literature, we introduce

nZ(r) = qZ(r)/e. (14)

nZ integrates to −Z in a unit cell, with

Z =
∑

a

Za. (15)

For convenience, the frozen densities that can be decom-
posed as a sum over atomic sites are often treated together, as
an “ionic density” nZc:

nZc(r) = nZ(r) + nc(r) (16)

=
∑
Ra

na
Zc(|r − R − τa|). (17)

The ionic density integrates to −Zion = Nc − Z.
Finally, the total charge density enT which contains contri-

butions from all charges (electrons and protons) is computed
from

nT = nZ + nc + n = nZc + n. (18)

Some physical properties require one to calculate charged
unit cells. Nonzero charges q are obtained whenever the
number of protons is not balanced by the number of electrons
in the cell:

q = Z − N = Zion − Nv. (19)

However, the potential obtained from such an unbalanced
density would diverge. In practice, a compensating background
is added in order to ensure the global charge neutrality:

n′
T (r) = nT (r) + q

�
. (20)

We remind that we introduced the prime notation for charge
compensated densities that average to zero.

With these definitions, the total Coulomb energy per unit
cell in a solid can be explicitly written

ECoul = 1

2NR
〈n′

T ,n′
T 〉 − 1

2NR

∑
Ra

〈
nRa

Z ,nRa
Z

〉
. (21)

This is the Coulomb self-energy of n′
T with explicit removal

of the nuclei self-interaction. The self-interaction energy of a
point charge is infinite and therefore each term in the previous
equations is infinite. Fortunately, the difference between the
two terms remains finite. Although not mathematically correct,
this way of writing the equations is extremely practical. The
mathematical correctness would be recovered by considering
Gaussian shaped nuclei instead of point nuclei and then
performing the limit to vanishing Gaussian widths. This would
unfortunately make the equations less readable. Equation (21)
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is valid not only for neutral systems, but also for charged
systems owing to the use of the background compensated n′

T .

III. PAW BACKGROUND TERMS

The PAW method allows one to reconstruct AE wave func-
tions, AE densities, and AE expectation values of operators out
of pseudoquantities. The technique has many conceptual and
numerical advantages, but they are obtained at the expense of
introducing intermediate densities and potentials. This makes
the derivation of the equation less straightforward. Indeed, we
show in this section that background terms in the potential and
in the energy have been omitted so far.

A. PAW charge densities

The PAW transformation maps the physical valence den-
sities n using smooth densities ñ [9]. The physical densities
have a full nodal structure in the vicinity of the atoms, whereas
the smooth densities do not. The smooth density deviates from
the physical density only inside spheres centered on atoms.
In order to transform smooth densities into physical densities,
just on-site corrections to the densities are necessary.

Then the physical valence density is written

n(r) = ñ(r) − ñ1(r) + n1(r), (22)

where ñ1(r) is the spurious smooth density in the PAW spheres
and n1(r) is the physical density in the spheres. We follow the
standard notations [10,18,19]: The smooth quantities have a
tilde and the on-site quantities have an exponent 1.

The PAW technique requires also the introduction of the
smooth density ñZc(r) to mimic the ionic core density (core
electrons plus protons) that we introduced in the previous
section, nZc(r). The potential created by ñZc plays the role of a
pseudopotential for the smooth valence density ñ. vH [ñZc] can
be thought of as the local component in the pseudopotential
scheme. It is the sum over atomic contribution

ñZc(r) =
∑
Ra

ñRa
Zc (r) (23)

=
∑
Ra

ña
Zc(|r − R − τa|). (24)

As consequence, the total density nT including the core and
valence electrons and the protons can be recast into three terms
following in the same spirit as for Eq. (22):

nT = ñT − ñ1
T + n1

T , (25)

where

ñT = ñ + n̂ + ñZc, (26)

ñ1
T = ñ1 + n̂ + ñZc, (27)

n1
T = n1 + nZc. (28)

The technical compensation charge n̂ has been further added
and subtracted in the total density. This last density is chosen

so that the moments in the multipole expansion of n1
T − ñ1

T are
zero. This is necessary to eliminate electrostatic interactions
between PAW spheres.

Since nZc and ñZc charge distributions are monopole,
carrying the same charge −Zion, n̂ makes the moments of
n1 − ñ1 − n̂ vanish. Although the smooth density does not
necessarily conserve the number of electrons, the sum ñ + n̂

does.

B. Coulomb energy within PAW

The electrostatic energy per unit cell in the PAW framework
can be written as

ECoul = 1

2NR
〈n′

T ,n′
T 〉 − 1

2NR

∑
Ra

〈
nRa

Zc ,n
Ra
Zc

〉
. (29)

This expression is similar to Eq. (21) except that the core-core
and core-nucleus interactions have been removed, since they
only account for a change of origin in the total energies. We
stress that the expression for the Coulomb self-energy of the
charge distribution departs from the usual expression [10], as
we explicitly introduced the compensating background in the
n′

T densities. This has no consequence for the energy of neutral
systems. However, it has one for charged systems, as we will
show in the following.

The compensating background is homogeneous in the solid.
It is practical then to include it in the smooth density,

n′
T = ñ′

T − ñ1
T + n1

T . (30)

Then, we transform

〈n′
T ,n′

T 〉 = 〈ñ′
T ,ñ′

T 〉 + 2
〈
n1

T − ñ1
T ,ñ′

T

〉
+〈

n1
T − ñ1

T ,n1
T − ñ1

T

〉
. (31)

This follows the usual PAW derivation except for the account
of the compensating background in the smooth density. The
last two terms can be evaluated on-site, since the charge
distribution n1

T − ñ1
T has vanishing moments outside the PAW

spheres. Compared to the standard derivation, only two terms
need to be explicitly derived: 〈ñ′

T ,ñ′
T 〉 and 〈n1

T − ñ1
T ,ñ′

T 〉. The
following focuses on these two modified terms. We refer the
reader to Ref. [10] for the usual terms, which are not detailed
here.

1. The smooth density Coulomb self-energy

In fact, the explicit introduction of the compensating
background in the term 〈ñ′

T ,ñ′
T 〉 does not yield any change

compared to the standard implementations, since the average
values of the Hartree potential and of the ionic pseudopotential
are usually set to zero manually. Let us demonstrate this
equivalence here.

The total smooth density ñ′
T can be recast into two charge-

neutral terms:

ñ′
T =

(
ñ + n̂ − Nv

�

)
+

(
ñZc + Zion

�

)
(32)

= (ñ + n̂)′ + ñ′
Zc. (33)
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When inserted in 〈ñ′
T ,ñ′

T 〉, this decomposition turns to the
familiar sum of Hartree energy, local pseudopotential energy,
and ion-ion repulsion energy:

1

2NR
〈ñ′

T ,ñ′
T 〉 = 1

2NR
〈(ñ + n̂)′,(ñ + n̂)′〉

+ 1

NR
〈(ñ + n̂)′,ñ′

Zc〉 + 1

2NR
〈ñ′

Zc,ñ
′
Zc〉. (34)

Owing to the explicit introduction of the compensating
background charge, we immediately recognize that the Hartree
energy in the previous equation is half the integral of the
background compensated valence electron density (ñ + n̂)′
times the Hartree potential induced by the same charge density
vH [(ñ + n̂)′]. Note that the average value of the Hartree
potential is explicitly set to zero due to the vanishing average
of (ñ + n̂)′ in the argument of vH . The same remarks hold
for the local pseudopotential energy (the second term on the
right-hand side of the previous equation), which arises from
the zero-averaged pseudopotential vH [ñ′

Zc]. We have then
identified the Hartree energy and local pseudopotential energy
as they are usually calculated in practical codes.

The last term, together with the removal of the self-
interaction [last sum in Eq. (29)], is the pseudo-ion/pseudo-ion
repulsion with the convention of a vanishing average potential.
It reduces to the usual point-charge/point-charge repulsion,
usually named EEwald, plus the so-called Zα term [8]

EZα = Zion

�

∑
a

αa, (35)

where the integral αa ,

αa =
∫

dr
{
vH

[
ña

Zc

]
(r) + Za

ion

|r|
}
, (36)

measures the deviation in average potential between the
pseudodensity vH [ñZc] and a point charge −Zionδ(r)

In the Appendix, we provide the full derivation of these
two terms, since several expressions exist in the literature. The
energy EZα is sometimes written with a factor Zion [8,20]
or with a factor Nv [1,7]. As long as neutral systems are
considered, the choice does not matter. However, for charged
systems Nv �= Zion, the total energy depends on the particular
expression implemented. The Appendix demonstrates that the
consistent expression should employ the factor Zion.

2. The background terms in the Coulomb energy

In Eq. (31), there is another occurrence of background
charge density from the term 〈n1

T − ñ1
T ,ñ′

T 〉. We show in the
following that this term adds extra terms in the total energy of
a charged system.

In the usual derivation of the PAW energies, the density
ñT is replaced by its on-site projection ñ1

T , since the integral
in 〈n1

T − ñ1
T ,ñT 〉 does not have any contribution from outside

the sphere, due to the vanishing moments of n1
T − ñ1

T . This
transformation is approximate but believed to be very accurate
[9,10]. It would be exact in the completeness limit of the
projectors inside the PAW sphere.

When the background is also included, the transformation
reads

ñ′
T ≈ ñ1

T + q

�
. (37)

Whereas the term 〈n1
T − ñ1

T ,ñ1
T 〉 is treated in the existing

PAW derivations and will not be discussed further here, the
background term

EPAW bg = 1

NR

〈
n1

T − ñ1
T ,

q

�

〉
(38)

has not been explored so far.
This correcting term can be split for numerical convenience

into

E
(1)
PAW bg = 1

NR

〈
nZc − ñZc,

q

�

〉
, (39)

E
(2)
PAW bg = 1

NR

〈
n1 − ñ1 − n̂,

q

�

〉
. (40)

These expressions can be decomposed on the PAW spheres,
due to the vanishing moments of the left-hand side arguments
of the Coulomb integrals. The first term bears striking
similarities to the Zα term in the pseudo-ion/pseudo-ion part:

E
(1)
PAW bg = q

�

∑
a

βa, (41)

where the integral

βa =
∫

dr
{
vH

[
na

Zc

]
(r) − vH

[
ña

Zc

]
(r)

}
(42)

can be precalculated from the PAW atomic data. The meaning
of βa is clear: It measures the difference between the physical
potential due to nucleus and the core electrons vH [na

Zc] and
the pseudopotential vH [ña

Zc].
Figure 1 shows the potential used for the calculation of

βa for silicon and carbon. These two elements have the same
number of valence electrons, however, the value of βa depends
much on the cutoff radius and on the pseudization scheme.
In these examples, within these pseudization conditions,
silicon has βa = −13.1 hartree, whereas carbon has βa =
−4.4 hartree. This shows the wide range of possible values
for βa . Note that for carbon, the core electrons are few
and therefore there is only a very small difference between
the point-charge potential −Za

ion/r and the physical potential
vH [na

Zc]. As a consequence, the integral βa is close the opposite
of integral αa = 4.0 hartree. For silicon, the core electrons
are more widely spread, as can be appreciated in Fig. 1, and
therefore the deviation of βa from the opposite of αa = 7.5
hartree is noticeable.

Let us turn now to the second background term E
(2)
PAW bg.

This term is slightly more complicated, since it explicitly
depends on the valence density. It cannot be precalculated.
However, it can be expanded on coefficients that can be
precalculated and stored.
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FIG. 1. (Color online) Spherical potentials involved in the integrals αa and βa exemplified for silicon in the left-hand panel and carbon in
the right-hand panel. The point-charge potential is the dotted black line, the physical nucleus plus core electron potential vH [nZc] is the dashed
blue line, and the pseudopotential vH [ñZc] is the solid red line. Both pseudopotentials were generated with the Vanderbilt technique [21,22]
using the cutoff radius symbolized with the vertical dotted line.

Indeed, the three densities in Eq. (40) can be expanded on
the projectors inside each PAW sphere as

n1(r) =
∑
Raij

ρa
ijφ

a∗
i (r − R − τa)φa

j (r − R − τa), (43)

ñ1(r) =
∑
Raij

ρa
ij φ̃

a∗
i (r − R − τa)φ̃a

j (r − R − τa), (44)

n̂(r) =
∑
Raij

ρa
ij

∑
LM

Q̂aLM
ij (r − R − τa). (45)

The details of the algebra can be found, for instance, in
Ref. [18]. Index a runs over atomic sites. Index i (and j )
is a composite index for projector number ni , and angular
momenta li and mi . ρa

ij is the density matrix in the basis of the
projectors of site a. φa

i and φ̃a
i are respectively the AE and the

pseudo-wave functions for atom a and projector i. Q̂aLM
ij are

the coefficients of the multipole expansion of the compensation
charge, with L and M being the angular momentum indexes.

Besides the density matrix ρa
ij , all these coefficients can be

precalculated at the beginning of a PAW run. Let us gather these
coefficients under the name γ a

ij , so that the second background
term can be written as

E
(2)
PAW bg = q

�

∑
aij

ρa
ij γ

a
ij . (46)

The γ a
ij are the average of the following potentials inside the

sphere a,

γ a
ij =

∫
drvH

[
φa∗

i φa
j − φ̃a∗

i φ̃a
j −

∑
LM

Q̂aLM
ij

]
(r). (47)

Note that the multipole expansion of the density in the
argument of vH has zero moments, since the charge dis-
tribution n1 − ñ1 + n̂ has a vanishing multipole expansion
by construction of n̂. However, this does not imply that the
induced potential vanishes inside the sphere. It just vanishes
outside the sphere.

All the terms in the argument of vH in Eq. (47) need not
be calculated. Indeed, performing the average in a sphere only
selects the monopole of the potential and, as the Coulomb in-
teraction 1/|r − r′| is diagonal in a multipole expansion, only
the monopole of the charge distribution yields a nonvanishing
contribution. Using the definition of Q̂aLM

ij (see, e.g., Ref. [18])
and after some algebra, the only contribution in the argument
of vH in Eq. (47) that needs to be calculated, Ra

ij , reads

Ra
ij (r)= δli ,lj δmi ,mj

4π

{
φa

ni li
(r)φa

nj lj
(r) − φ̃a

ni li
(r)φ̃a

nj lj
(r)

r2

− g0(r)
∫

dr ′[φa
ni li

(r ′)φa
nj lj

(r ′) − φ̃a
ni li

(r ′)φ̃a
nj lj

(r ′)
]}

,

(48)

with φni li (r) and φ̃ni li (r) the radial AE and pseudo-wave
functions, and g0(r) a shape function for angular momentum
l = 0 [18].
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The final expression of γ a
ij is simply

γ a
ij =

∫
dr4πr2vH

[
Ra

ij

]
(r). (49)

As the first background term, the origin of the second
background term is due to the introduction of a working
quantity that modifies the smooth density compared to the
AE density. This second background term is related to the
existence of the compensation charge n̂. In a norm-conserving
(NC) framework, the density ñ would integrate to Nv and
no working density n̂ would be required. The magnitude of
this second term is not easily appreciated from its analytic
expression. In the following section, we will show in a practical
case that this term, though smaller than the first one, is indeed
not negligible.

The total PAW background energy can be written as

EPAW bg = q

�

∑
a

(
βa +

∑
ij

ρa
ij γ

a
ij

)
, (50)

where the coefficients βa and γ a
ij can all be calculated from the

PAW atomic data at the beginning of a solid-state calculation.
This extra term has to be added to the usual PAW total energy.
It is zero for charge-neutral cells, however, it will modify the
charged cell total energy.

C. Extra contribution to the PAW stress tensor

Since Eq. (50) depends on the volume of the cell �, there
will be an additional term in the diagonal of the stress tensor
of charged cells. The stress tensor needs to be corrected with
the addition of σxx ′

PAW bg (x and x ′ indexes over the Cartesian
axis):

σxx ′
PAW bg = −δxx ′

q

�2

∑
a

(
βa +

∑
ij

ρa
ij γ

a
ij

)
. (51)

D. Extra contribution to the PAW potential

A less obvious consequence of the additional background
energy is its influence on the PAW potential for both charged
and neutral systems. Indeed, the Kohn-Sham potential is
defined as a functional derivative with respect to the (physical)
density [23]. In the PAW framework, this implies to differenti-
ate with respect to the pseudodensity operator [9,10]. The extra
term in the energy gives rise to a contribution to the potential
named vPAW bg.

The energy EPAW bg has an obvious dependence on the
density matrix ρa

ij . However, it also has a dependence with
respect to n through the factor q = Zion − Nv . Indeed, the
number of valence electrons is a functional of the density

Nv =
∫

drn(r) =
∫

dr[ñ(r) + n̂(r)]. (52)

Taking the derivative of Nv with respect to ñ and to ρa
ij

(contained in n̂) introduces the overlap operator Ŝ [10].

Therefore, the new background contribution to the nonlocal
PAW potential is

v̂PAW bg = − Ŝ

�

∑
a

(
βa +

∑
ij

ρa
ij γ

a
ij

)

+ q

�

∑
aij

∣∣p̃a
i

〉
γ a

ij

〈
p̃a

j

∣∣, (53)

where p̃a
i are the PAW projectors.

The striking result is the existence of a correcting term in
the potential even for neutral systems. Even though the energy
correction of the neutral system is zero, its derivative with
respect to the density is nonvanishing.

The changes introduced in the absolute value of
the potential would affect all the eigenvalues with the same
rigid shift. For instance, when referring the position of the
band edges to the position of core states or to the average
position of the electrostatic potential, the difference would
remain unchanged and, consequently, the calculations of band
offsets would remain unaffected [24,25]. However, when the
composition of the solid is changed with the introduction of
defects, the extra terms in the potential have a finite effect, as
we will show in the following section.

IV. PAW APPLICATIONS TO CHARGED SYSTEMS

We have derived additional terms in the PAW energy,
potential, and stress. This section provides practical examples
for the influence of the extra contributions. The additional
terms have been implemented in the PAW code ABINIT [26].

A. Lattice of protons

Our first example is a gedanken experiment that will not
require any numerical calculation. Let us consider a lattice of
protons, let us say, one proton per unit cell to fix the ideas, with
no electrons. Of course, a neutralizing background is required
to keep the total energy finite.

In this simplistic system, all the components of the total
energy related to electrons are zero. In the conventional
derivations of PAW, two terms remain: the Ewald point-
charge/point-charge repulsion energy and the Zα energy.
But one of these is actually spurious. Indeed, the Ewald
repulsion energy is precisely the electrostatic self-energy of
the charge distribution of the point-charge protons with their
compensating background. However, the energy EZα should
not be present, since it adds a contribution that depends on the
local pseudopotential vH [ñZc].

We demonstrate now that adding the background terms
fixes the problem. The coefficients γ a

ij have no effect since the
density matrix ρa

ij vanishes. The physical core plus nucleus
potential vH [nZc] reduces to −Zion/r , as there is no core
electron either. As a consequence, comparing Eqs. (36) and
(42), βa = −αa and thus E

(1)
PAW bg = −EZα .

Owing to the background energy term E
(1)
PAW bg, the spurious

EZα contribution is eliminated from the total energy. The total
energy of the lattice of a proton with no electrons is then
independent of the pseudization details, as we expect.
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B. Charged vacancy in LiH: Benchmark against AE results

In order to check the validity of the PAW derivation and the
magnitude of the additional terms in the energy and potential,
it would be desirable to have a valid reference calculation for
a charged system. We choose here to focus on the charged
lithium vacancy in rocksalt LiH, V −

Li . This particular system
was selected for the small charge of the nuclei, so that AE
calculations within a plane-wave basis set were tractable.

In practice, we employ model pseudopotentials with just a
local component −Za erf(r/rc)/r instead of the full potential
−Za/r . We converge the calculation with respect to both the
radius rc and the plane-wave basis cutoff energy Ecut. Using
this type of pseudopotential is equivalent to considering that
the nuclei are Gaussian charge distributions with a spread rc.
Although the absolute energies are impossible to converge,
the total energy differences and the potentials show a much
smoother behavior with respect to rc and Ecut. This procedure
allows us to extract unambiguous AE data with parameters
rc = 0.0025 bohrs and Ecut = 2000 hartree, which still keeps
the calculation cost low enough even for the eight-atom
supercells.

The formation energy of the lithium vacancy Ef (V −
Li ) is

evaluated through

Ef (V −
Li ) = E(Li3H4

−) − E(Li4H4) + E(Li) − εVBM(LiH),

(54)

where E(Li3H4
−) is the total energy of a supercell, E(Li) is

the total energy of the isolated Li atom, and εVBM(LiH) is
the valence band maximum of bulk LiH. This is the usual
formation energy [27] with q = −1, with the Fermi level set
to the top valence band, and with the chemical potential of
Li fixed to the atom energy. Of course, supercells with only
seven and eight atoms do not give a proper evaluation of the
true formation energy, but our purpose is simply to compare
the ab initio methods. For the same reason, we do not include
any charge correction nor potential alignment [11–14,16,17].
The PAW and the AE quantities should in principle match on
an absolute scale, since the same convention has been retained
for the evaluation of the Coulomb potentials without the need
for a correcting post-treatment.

In practice, the supercell consists of seven or eight unre-
laxed atoms in a cubic supercell with an edge 7.60 bohrs, and
the k-point sampling is a �-centered 4 × 4 × 4 grid, within
the local density approximation (LDA). The isolated lithium
atom is placed in a supercell with the same dimensions, using
a �-only sampling. The corresponding PAW calculations use
an over converged cutoff energy of 30 hartree for the wave
functions and 60 hartree for the dense grid. In Fig. 2, the PAW
total energies and valence band maximum are compared to the
AE results. The first series shows the total energy difference
E(Li3H4

−) − E(Li4H4) + E(Li) with or without inclusion of
the background terms. The second series shows the valence
band maximum of the bulk εVBM(LiH). The last series is the
formation energy, i.e., the difference between the two previous
series. Including the additional background terms has a sizable
effect on the total energies and on the top valence energy.
Even if these changes cancel each other out to some extent,
the final physical quantity Ef is modified by the inclusion of
the background terms. The two additional terms arising from
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FIG. 2. (Color online) Contributions to the formation energy of
a charged lithium vacancy V −

Li , calculated with different PAW terms
(solid red lines), compared to an AE reference (dashed blue lines).
The first PAW calculations do not include βa nor γ a

ij , the second
calculation does include βa but not γ a

ij , and the third calculation
includes both terms. The formation energy is evaluated for the Fermi
level fixed at the valence band maximum.

integrals βa and γ a
ij both have a visible effect. Only when

the two are properly included could the PAW calculations
reproduce the AE results.

As mentioned earlier, the PAW results without the back-
ground terms show a spurious dependence on the pseudization
procedure. We evaluate this effect in Fig. 3 by varying the
cutoff radius r loc

c for the generation of the local pseudopotential
vH [ñZc] using the Vanderbilt procedure [21,22]. The corrected
PAW results including the background terms are much more
stable with respect to a change of pseudopotential than the
uncorrected PAW data. The statement is not only true for the
intermediate components such as the total energy difference or
the top valence band energy [Figs. 3(a) and 3(b)], but also holds
for the physical formation energy Ef (V −

Li ) [Fig. 3(c)].

C. Highly charged interstitial SiC, Si4+
TC: Benchmarking

different codes

The magnitude of the background terms is proportional to
the charge q of the defect. We now turn to a well-documented
[28,29] charged defect of cubic silicon carbide, the silicon
interstitial tetrahedrically coordinated to carbon atoms, Si4+

TC.
In Fig. 4, we compare the Perdew-Burke-Ernzerhof (PBE)

[30] formation energy of Si4+
TC from three different PAW codes:

VASP [31], QUANTUM ESPRESSO [32], and ABINIT [26]. In
ABINIT, we have switched on and off the background correcting
terms for the calculation of the formation energy. Note that for
consistency QUANTUM ESPRESSO and ABINIT use the same PAW
atomic data. This has not been possible for VASP, unfortunately,
so that the VASP curve has been shifted up quite arbitrarily.

Carefully looking at the PAW implementation in the
different codes, VASP and ABINIT without background have
the same convention of setting the average smooth potential to
zero, 〈vH [ñZc]〉 = 0. Indeed, the slope of the corresponding
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FIG. 3. (Color online) Dependence of uncorrected (blue circles) and corrected (red squares) PAW results with respect to the local potential
cutoff radius r loc

c in LiH. (a) represents the total energy difference in Eq. (54), i.e., the three first terms. (b) shows the valence band maximum
of bulk LiH, i.e., the last term in Eq. (54). (c) shows the formation energy of the negatively charged Li vacancy with the Fermi level fixed at
the valence band maximum.
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FIG. 4. (Color online) PAW formation energy Ef deviation for
the silicon interstitial Si4+

TC in cubic SiC as a function of supercell
size within PBE with the Fermi level fixed at the valence band
maximum and in silicon-rich conditions. Results have been obtained
from VASP (squares), QUANTUM ESPRESSO (circles), ABINIT without
the background terms (open diamonds), and ABINIT including the
background terms (solid diamonds). This last curve has been
chosen as a zero, so as to highlight the difference between the
implementations. The absolute formation energy Ef is given in
the inset, where the spurious charge-charge interaction dominates
[16] (convergence as N

−1/3
atom ). The QUANTUM ESPRESSO and ABINIT

calculations use the same PAW atomic data, whereas it was necessary
to shift up the VASP results by 100 meV.

curves matches. The QUANTUM ESPRESSO convention sets
the average smooth potential to 〈vH [ñZc]〉 = ∑

a βa/�. This
produces a different slope. The meaning of this choice will
be discussed in detail in the next section. Finally, the results
from ABINIT with background terms are built to match the AE
formalism using a total electrostatic potential that averages to
zero 〈vH [nZc]〉 = 0.

For the interstitial Si4+
TC, the difference between the conven-

tions implemented in the codes quite significantly impacts the
formation energy. For the 64-atom supercell, the difference can
be as large as 0.25 eV and it is still 0.10 eV for the 216-atom
supercell. Fortunately, the background terms are proportional
to 1/� and their effect should vanish with increasing supercell
sizes.

V. CONSEQUENCES FOR THE PSEUDOPOTENTIAL
METHOD

So far, we have stressed the importance of having a
consistent convention for the potentials in the PAW method.
The derivation for PAW in Sec. III highlights the role of
different potentials: the pseudopotential, written vH [ñZc] in
the PAW language, and the true physical core electron plus
nucleus potential, labeled vH [nZc]. In an AE calculation, the
situation is clear: The average value of the physical potential
vH [nZc] is set to zero. However, within the pseudopotential
framework, different choices can be found in the available
implementations.

For instance, prior to version 7.5, the ABINIT code [26] uses
the Zα energy term [8] and consequently sets the average
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pseudopotential vH [ñZc] to zero [33]. If the total energy
expression uses instead a factor Nv in the Zα term [1,7],
then the potential will be shifted accordingly. The potential is
obtained as a functional derivative with respect to the electronic
density and the number of valence electrons Nv is indeed
a functional of the density. In QUANTUM ESPRESSO [32], for
instance, this choice is made and the pseudopotential vH [ñZc]
averages to

∑
a αa/�. This corresponds to a specific choice

of the constant A introduced by the Ewald convention for the
calculation of the potential vH [ñZc]. It could seem surprising
to choose an inconsistent definition for the constant A.

Indeed, a consistent choice of the constant A that induces
zero average for all the electrostatic potentials naturally leads
to the absolute values as obtained with the Zα energy term, as
derived in Ref. [8]. However, this choice induces a dependence
of the energies and potentials on the pseudization details. It
would be appreciated to devise a scheme which is independent
of the pseudopotential and, even better, which reproduces
as far as possible the absolute AE results. This could be
achieved in practice by introducing the frozen core density,
as we demonstrate in this section. This also gives an a
posteriori justification for the convention using Nv in the Zα

term.

A. Accounting for the physical core density in norm-conserving
pseudopotentials

It is straightforward to adapt the PAW derivation of Sec. III
to the simpler case of NC pseudopotentials. First of all, there
is no equivalent to the integrals γ a

ij in the pseudopotential
framework, since there is no on-site representation of the
charge density. But the integrals βa , which measure the differ-
ence between the physical core electron+nucleus potential and
the pseudopotential, still exist. Therefore, setting the physical
potential to a zero average introduces an extra term in the
total energy. The core electron and nucleus electrostatic energy
reads

EZc
Coul = EEwald + EZα + E

(1)
PAW bg, (55)

where E
(1)
PAW bg has been defined in Eq. (39), and detailed in

Eq. (41). The origin of the usual terms EEwald and of EZα is
recapitulated in the Appendix.

The addition of E
(1)
PAW bg to the total energy does not

modify the total energy of a charge-neutral cell. However,
the potential as obtained from a functional derivative of the
energy with respect to the density is affected, since E

(1)
PAW bg

has a dependence on Nv . The additional contribution to the
potential vNC bg is a constant:

vNC bg = − 1

�

∑
a

βa. (56)

The calculation of the integrals βa is straightforward: It just
requires the knowledge of the physical frozen core electron
density. This piece of information is available during the
pseudopotential generation, but it is unfortunately generally
not stored in the pseudopotential files. It would be direct to
include it also.

Imagine now that the core density is much localized around
the nucleus. In this case, the core+nucleus potential would only
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FIG. 5. (Color online) NC formation energy Ef within LDA of
the unrelaxed doubly charged vacancy in diamond V 2+

C with the
Fermi level fixed at the valence band maximum as a function of the
cutoff radius of the local pseudopotential (l = 2), using βa = 0 (blue
diamonds), βa ≈ −αa (red circles), or explicitly calculating βa (black
squares).

slightly deviate from the point-charge potential Zion/r , as we
observed in the case of carbon in right-hand panel of Fig. 1.
Then the βa integrals would be very similar to αa integrals:

βa ≈ −αa. (57)

In this approximation, the following simplification occurs:

EZα + E
(1)
PAW bg ≈ Nv

�

∑
a

αa. (58)

The present derivation gives an a posteriori justification
for the total energy and potential formulas, which are written
in some textbooks [1,7] and used in some codes, such as
QUANTUM ESPRESSO [32].

B. Charged defect examples

We now test the effect of modifying the total energy and
potential expressions in NC calculations of the formation
energy of charged defects. Within the NC framework, it would
be perfection to hope to obtain the same results as with
reference AE calculations. However, it would be more realistic
to have a weak dependence of the physical properties upon the
pseudopotential details.

We consider in Fig. 5 a doubly charged vacancy V 2+
C in a

64-atom cubic supercell of diamond. For simplicity, the atoms
are not relaxed, the lattice constant is set to 6.75 bohrs, and
the cutoff energy is set to a very large value of 150 hartree.
The carbon pseudopotential that has been generated with the
Troullier-Martins technique [34] with a local component is
l = 2. As the carbon valence electrons have mainly a sp

character, a change in the d component of the pseudopotential
should only indirectly impact the physical properties. It is
interesting to focus on this particular defect which has been
recently shown to be out of reach of the usual correction
schemes due to its delocalized nature [14]. In Fig. 5, we
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FIG. 6. (Color online) NC formation energy Ef deviation within
LDA of the unrelaxed silicon interstitial Si4+

TC in cubic SiC with the
Fermi level fixed at the valence band maximum and in silicon-rich
conditions as a function of supercell size, using βa = 0 (blue
diamonds), βa ≈ −αa (red circles), or explicitly calculating βa (black
squares). This last curve has been chosen as a zero, so as to highlight
the difference between the implementations. The absolute formation
energy Ef shows the same behavior as in Fig. 4.

show the behavior of the formation energy of the charged
vacancy as a function of the pseudopotential cutoff radius r loc

c .
The usual expression, which sets the average pseudopotential
to zero (βa = 0), presents a strong dependence on r loc

c . If
the zero of the potentials is defined with point-charge nuclei
and core electrons (βa ≈ −αa), then the formation energy
is remarkably stable. Furthermore, it deviates only slightly
from the final results, which consistently set the origin of the
potential through the true core electron plus nuclei density
(actual calculation of βa). It could be argued that all these
changes have a small magnitude, however, the dependence on
the details of the local component of the pseudopotential is
clearly pathological.

Furthermore, when the defects involve adding or removing
atoms with a wider core electron density, the effects can be
significantly larger. Turning back to the silicon interstitial
Si4+

TC we used in the previous section, the added silicon atom
has a larger core consisting of ten electrons. Figure 6 shows
the difference in formation energy within LDA for the three
choices of the potential origin. For clarity, the formation
energy with an explicit calculation of βa has been set to zero.
The difference between the three schemes decreases as �−1,
however, for relatively large supercells (64–216 atoms), the
difference can be as large as 0.25–0.80 eV. Except for the
smallest supercell size, the approximation βa ≈ −αa is a very
decent approximation.

From these numerical applications, we conclude that it is
important to include the background term in the total energy
and in the potential. If the exact calculation of integrals βa ,
though simple to perform, is not available, the approximation
βa ≈ −αa also yields reasonable results.

VI. CONCLUSIONS

In this paper, we derived two additional terms in the
PAW energy of charged systems and in the PAW potential
of all systems in order to reconcile AE calculations and PAW
framework. These two terms [see Eq. (50)] arise from the
proper treatment of the compensating background density,
which is required by the use of periodic boundary calculations.

They are of a different nature. The first term measures
the difference between the average smooth pseudopotential
and the true physical nucleus plus the core electron potential.
This contribution is usually the largest. Though smaller, the
second term can also have a visible influence. The second
term measures the difference in potential induced by the
introduction of the compensation density n̂.

The correct inclusion of these two terms has two positive
consequences: It makes the PAW results directly comparable
with AE calculations, and it makes the PAW results less
sensitive to the PAW atomic data. We would like to stress
that the proper treatment of the background terms not only
affects the absolute energy values, but also impacts the physical
quantities that are extracted, such as the formation energy
or the relaxation volume of charged defects. The formation
energy of the charged defects in small supercells or with a
high charge state can be modified by several tenths of eV.
Though these differences could also be reconciled by a
potential alignment correction, a universal definition of the
potential alignment is still missing.

For consistency with AE calculations, the first background
term should also be introduced in the NC framework. This
explains why different plane-wave codes could produce
different physical results with the same pseudopotential data.
The inclusion of the background term in Eq. (55) yields a total
energy expression, which best approximates the AE results.
However, its impact is even larger than experienced in the
PAW framework. For the highly charged defect Si4+

TC in SiC,
the formation energy is still changed by 0.25 eV, even for the
216-atom supercell.
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APPENDIX: PSEUDO-ION/PSEUDO-ION INTERACTION

The expression for the pseudo-ion/pseudo-ion interaction
varies in the literature. This Appendix is meant to fix this
point.

The pseudo-ion/pseudo-ion repulsion energy is defined as

EZc
Coul = 1

2NR
〈ñ′

Zc,ñ
′
Zc〉 − 1

2

∑
a

〈
ña

Zc,ñ
a
Zc

〉
, (A1)

where ñZc and ña
Zc have been defined in Eqs. (23) and (24).

Indeed, it is sometimes written as the Ewald point-
charge/point-charge repulsion EEwald plus the celebrated Zα

term [8,20]. However, from some other sources, the Zα term
is replaced by an Nα term, with Nv replacing the Zion in
Eq. (35) [1,7]. We have stressed in Sec. II that once the Ewald
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convention has been chosen for the electrostatic interactions,
there should only be one expression for the total energy (the
unknown constant is fixed and the global dipole is assumed to
be zero).

Let us demonstrate here that the correct expression is
indeed the Zα with factor Zion. We have to bridge the
difference between the original charge distribution nZc, which
is a sum over atomic site contributions, and the point-charge
distribution used in the Ewald energy. The point-charge
distribution npc, which reads

npc(r) =
∑
Ra

na
pc(r − R − τa) (A2)

=
∑
Ra

−Za
ionδ(r − R − τa), (A3)

has the same multipole expansion as the original distribution
nZc, under the mild assumption that the PAW spheres are
nonoverlapping spheres. However, we have to then introduce
the compensating background both in n′

Zc and n′
pc.

Then transforming the term 〈ñ′
Zc,ñ

′
Zc〉, we write

〈ñ′
Zc,ñ

′
Zc〉 = 〈n′

pc,n
′
pc〉 + 〈ñ′

Zc − n′
pc,ñ

′
Zc + n′

pc〉. (A4)

In the last term, the backgrounds in ñ′
Zc − n′

pc compensate
and therefore the primes can be dropped there. As ñZc and

n′
pc are contained in the sphere and have the same multipole

expansion, only the on-site terms remain:

1

2NR
〈ñZc−npc,ñ

′
Zc+n′

pc〉= 1

2

∑
a

〈
ña

Zc − na
pc,ñ

a
Zc + na

pc

〉

+
∑

a

〈
ña

Zc − na
pc,

Zion

�

〉
, (A5)

where the backgrounds have been written explicitly. The last
term is precisely the Zα energy of Eq. (35).

Inserting the last equation in Eq. (A4), we obtain

1

2NR
〈ñ′

Zc,ñ
′
Zc〉 = 1

2NR
〈n′

pc,n
′
pc〉 − 1

2

∑
a

〈
na

pc,n
a
pc

〉

+ 1

2

∑
a

〈
na

Zc,n
a
Zc

〉 + EZα. (A6)

Reordering the terms in the last equation finally proves the
announced result:

EZc
Coul = EEwald + EZα. (A7)

The result that the factor in energy EZα is not Nv could have
been anticipated, since there is no reason to introduce the
number of electrons in the energy EZc

Coul that only depends on
the pseudopotential quantities.
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The supercell technique is widely spread for the simulation of charged point defects. Charged defects in a
supercell are unfortunately subjected to spurious image interactions, which are usually handled by introducing
two correcting terms: a Madelung-type correction that accounts for the electrostatic interactions of repeated
charges in a compensating background and a potential alignment term that refers the charged supercell to the
electron reservoir. We demonstrate that the Madelung correction already brings a large potential shift that slowly
converges as 1/L with increasing supercell sizes. We hence define a potential alignment devoid of any double
counting. We finally propose a simple evaluation for the nearest-neighbor interaction that removes the remaining
spurious hybridization of the defect wave functions between images. The application of these three corrections
together drastically speeds up the convergence with respect to supercell size for all defects that are not too
shallow.

DOI: 10.1103/PhysRevB.84.075155 PACS number(s): 71.15.Mb, 61.72.Bb

I. INTRODUCTION

The accurate prediction of the properties of point defects
is a key target of computer simulations in condensed matter
since defects govern many aspects of the physics of materials.
For instance, applications in electronics, optoelectronics, and
photovoltaics all rely on the fine control of charged defects in
semiconductors.1 With the advent of large supercomputers, it
has been possible to address the ab initio calculation of point
defects for over two decades now, thanks to density functional
theory (DFT).2

The ab initio calculation of defects in condensed matter
usually relies on the supercell approach.3 In this framework,
the isolated defect one intends to study is placed in a large
cell, which is periodically replicated. The advantages of this
approach are numerous, in particular the use of standard
plane-wave codes. The supercell approach is so practical that it
prevailed over competing frameworks, such as Mott-Littleton4

or Korringa-Kohn-Rostoker Green’s function.5

Nonetheless, the supercell approach suffers from one
main drawback: the spurious interaction between the defect
and its periodic images. This problem becomes particularly
prominent for charged systems that are subjected to the
long-range Coulomb interaction between images. No supercell
size accessible to modern (or future) computers would be
sufficient to render this interaction negligible. Indeed, the
magnitude of this spurious contribution to the total energy
scales as N−1/3, with N being the number of atoms in the
supercell.

This fact has given rise to the design of correction
schemes that would accelerate the slow convergence of
charged supercells. Correction schemes are numerous,3,6–11

but they generally rely on the evaluation of two contribu-
tions: a correction of the energy and/or a correction of the
potential. The correction for the energy �Eel is intended
to remove the spurious long-ranged electrostatic interaction
between the charged defect, its images, and the compensating
background. The potential shift �V should account for the
change of the reference energy for the electrons in the
charged supercell compared to the electrons in the pristine
bulk. Then the formation energy Ef (D,q) of defect D with

charge q in the Zhang and Northrup formalism12 finally
reads13

Ef (D,q) = ED,q − EHost −
∑

i

niμi

+ q(εVBM + εF + �V ) + �Eel(q), (1)

where ED,q is the raw energy of a supercell containing the
defect D and an extra charge q and EHost is the energy of the
perfect supercell with no defect. The energy of the added
or removed atoms ni is referred to the chemical potential
of reservoirs for the different elements μi . For electrons,
the chemical potential is governed by the Fermi energy EF ,
the zero of which is conventionally set at the valence band
maximum of the bulk material εVBM.

Much effort has been devoted to the design of intelligent
electrostatic corrections �Eel ; comprehensive discussion on
this point can be found elsewhere.9,14–16 A multitude of
conflicting ways have also been suggested to calculate the
potential alignment, but no convincing arguments have yet
been put forward for which is the most suitable. Some
authors suggest taking an average of the total Kohn-Sham
potential,15,17,18 and others suggest an average of the electro-
static potential only.13,19,20 This average is then taken either
over the entire supercell17,19 or in some localized region,
usually as far as possible from the defect.8,9,14 Some authors
even refrain from including potential alignment at all, due
to a (not entirely unfounded) fear of double counting some
terms when employing an electrostatic correction and potential
alignment together.21 Even more worryingly, there seems to
be a discontinuity in the community in the sign convention
used when defining potential alignment. It appears that many
authors take the potential shift defined in Eq. (1) as the average
potential in the defect cell minus the average potential in the
host cell, whatever their definition of these averages is,20,22,23

while other authors do completely the opposite.17,24

Hence, the best way to proceed when attempting to improve
the convergence for the supercell technique for charged defects
is rather unclear. As a first illustrative example, we provide
in Fig. 1 the convergence of the formation energy of two
charged defects in silicon: the tetrahedrically coordinated
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FIG. 1. (Color online) Convergence as a function of the supercell
size of the formation energy (top) of a silicon interstitial Si2+

Tet and
(middle) of a silicon vacancy V2+

Si . The raw energies are represented
with circles. The Madelung corrected energies are represented with
squares. The horizontal lines represent the converged values, and the
thin dashed lines are tentative extrapolations with the usual function
γ1N

−1/3 + γ2N
−1. (bottom) A cut of the difference in electronic

densities between the defective and host cells, ndefect(r) − nbulk(r),
along the (110) direction, passing through the bond centers for a
1000-atom cubic supercell.

self-interstitial SiTet (top panel) and the silicon vacancy VSi
(middle panel). The two defects have been considered in their
2+ charge state. For this charge state, they both have no
occupied state in the band gap. They are both embedded in
the same silicon host. In principle, one could have expected
the same behavior as a function of the supercell size. Figure 1
obviously contradicts this prediction. The uncorrected data
monotonously converge with a quite fair N−1/3 behavior in the
case of Si2+

Tet. In the case of V2+
Si , the convergence experiences

a turning point. The inclusion of the simple Madelung
electrostatic correction performs very well for the former and
very poorly for the latter. This different behavior could not
easily be anticipated from the electronic structure. The bottom
panel of Fig. 1 shows a cut of the difference of electronic
density between the defective and pristine supercells. Except
in the vicinity of the defect, the electronic density differences
at middle range simply show some Friedel’s type oscillations
with similar amplitudes. This clearly shows that the solution
to the problem does not lie in an improved definition of
electrostatic corrections.

In this article, we carefully address the different errors af-
fecting the energy obtained in supercell calculations. We leave
aside the elastic relaxations that produce much weaker effects,
and we concentrate on the electronic structure problems. We
summarize the computational aspects in Sec. II. In Sec. III,
we demonstrate that the electrostatic interactions induce a
position-dependent shift in the potential. As a consequence,
the definition of the potential alignment should be revised to
ensure the electrostatic contribution is not erroneously double
counted. Furthermore, our proposed potential alignment is
opposite in sign to some definitions (Sec. IV). We finally
identify a prominent contribution to the error in the supercell
technique: the spurious hybridization of defect wave functions
onto several images. This contribution is usually completely
disregarded. We provide in Sec. V a simple and practical
way to evaluate this involved term. The performance of our
three corrections is then demonstrated using various typical
examples.

II. COMPUTATIONAL DETAILS

All the DFT calculations presented here utilized the local
density approximation (LDA) for the exchange-correlation
functional, as implemented within the plane-wave code
ABINIT.25 Norm-conserving Troulliers-Martins26 pseudopo-
tentials were used for sodium and chloride, with only the
1s electrons treated as core for sodium. For silicon, we
developed an extremely smooth pseudopotential using the
FHI-98PP program.27 This pseudopotential has a very large
cutoff radius of 4.0 bohr for both the s and the p channels. This
somewhat crude pseudopotential yields a surprisingly good
lattice parameter (5.408 Å) and defect formation energies.
The very low plane-wave cutoff of 2.0 Ha enabled us to study
phenomenally large supercells (up to 4096 atoms). For NaCl
and for Si, 4 × 4 × 4 and 2 × 2 × 2 shifted Monkhorst-Pack28

k-point grids were used for primitive cells and supercells,
respectively. A lattice constant of 5.646 Å was used for NaCl,
and the cells were left unrelaxed throughout the calculations.
For silicon, following Ref. 9, the four neighbors nearest to
the defect have been relaxed in the 64-atom cell, and these
positions of the nearest neighbors are used for all further
calculations.

III. EVALUATING THE POTENTIAL SHIFT INDUCED
BY THE ELECTROSTATIC CORRECTION

In this section, we demonstrate that the electrostatic
correction �Eel and the potential alignment �V are, indeed,
connected quantities. Having this connection in mind will
allow us to propose an evaluation of the potential alignment
that does not double count the spurious electrostatic potential
of the supercell approach.

In order to keep the discussion simple we consider here
the simplest electrostatic correction, the monopole Madelung
term, as first proposed by Leslie and Gillan:3

�Eel = Eisolated
el − E

periodic
el ≈ αq2

2εL
, (2)

where α is the Madelung constant of the lattice, q is the
unbalanced charge, and L is the edge of the periodic box. The

075155-2

132



UNDERSTANDING AND CORRECTING THE SPURIOUS . . . PHYSICAL REVIEW B 84, 075155 (2011)

monopole correction is designed to transform the electrostatic
energy of a lattice of point charges in a neutralizing background
into the electrostatic energy of a single point charge. In
polarizable medium such as a solid, the Coulomb interaction is
further screened by the electrons, and the electrostatic energy
should be divided by the electronic dielectric constant ε. Here
we use ε∞ since the atoms are not allowed to relax in the
present study.

Some authors attempt to improve convergence by including
the third-order quadrupole in the electrostatic correction. We
have avoided doing this for three reasons. First, one of our
primary aims in this work was to produce an effective,
useful, and, crucially, simple correction scheme. Hence, we
utilize the simplest possible electrostatic correction. Second,
as mentioned in Sec. I, the similarity in the electronic density
difference between two silicon defects that converge at vastly
different rates proves that improving our definition of the
electrostatic correction will not solve the problem. In fact,
this electronic density difference is the key quantity in the
quadrupole term, lending further weight to this assumption.
Finally, a relatively recent study8 showed that the quadrupole
correction does not always improve results, leaving its utility
somewhat in question. In fact, since the quadrupole term al-
ways acts in the opposite direction to the Madelung monopole,
it will always worsen results for defects that are converging
from below after the monopole correction has been applied
(e.g., the silicon interstitial in Fig. 1).

Let us now prove rigorously that the monopole term in
Eq. (2) already introduces a shift in the potentials. The
Kohn-Sham (KS) potential vKS is obtained by the functional
derivative of the total energy minus the kinetic energy with
respect to the electronic density n(r):2

vKS(r) = δ(E[n] − T [n])

δn(r)
. (3)

If the energy E[n] requires an electrostatic correction �Eel ,
so will the obtained potential.

The functional derivative of the KS potential with the
electrostatic correction can easily be tracted if the expression
of the charge q as a function of the density is introduced:

q =
∑

i

Zi −
∫

drn(r), (4)

where
∑

i Zi is the total of the ionic charges in the cell.
Hence, the periodic KS potential also contains a spurious

contribution when compared to the isolated KS potential, if
one assumes a monopole correction:

v
periodic
KS (r) = visolated

KS (r) − d

dq
(−�Eel) (5)

= visolated
KS (r) + αq

ε∞L
, (6)

where the minus sign in the first line comes from the
differentiation of Eq. (4) with respect to the electronic density.
Finally, we see the KS potential in a periodic supercell is
shifted with respect to the KS potential that an isolated charge

would have, by the Madelung potential constant vM , which
reads11

vM = − αq

ε∞L
. (7)

We have thus demonstrated that the charged-supercell ap-
proach introduces a significant shift in the KS potentials, which
slowly decays as 1/L. Therefore, one cannot consider inde-
pendently correcting the electrostatic energy and correcting
via potential alignment.

Keeping this in mind, what should be the practical proce-
dure to perform a consistent, reliable potential alignment? In
order to approach this problem, we have implemented a simple
Poisson solver for periodic systems, based on fast Fourier
transforms, completely analogous to the technique used in
periodic DFT codes. This code allowed us to produce the data
for Fig. 2 that present the electrostatic potential of a positive
point charge (in reality, a Gaussian with a very small width)
as it would be calculated in any periodic code. The parameters
were chosen to represent a positive charge, located at zero in a
cubic 512-atom supercell of sodium chloride. The interactions
were scaled down with the calculated dielectric constant ε∞.
The choice of NaCl is governed by the desire to have localized
defects that ease understanding.

A truly isolated point charge q in a medium should create
a long-range Coulomb potential q/ε∞r , as represented by a
solid line in Fig. 2. The potential created by the truly isolated
point charge goes asymptotically to zero. The calculated
electrostatic potential of a point charge in a supercell with
a compensating background, represented by the dashed line,
deviates significantly from the single isolated charge. In
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FIG. 2. (Color online) Electrostatic potentials created by a single
point charge in an infinite sample (solid red line), an array of
point charges with compensating background (dashed black line),
and a single point charge in an infinite sample shifted by the
Madelung potential −vM (dot-dashed blue line). The parameters
(lattice constant, dielectric constant) have been chosen to mimic a
cubic 512-atom supercell of NaCl. The green diamonds represent the
deviation of the Na 2s core levels with respect to the bulk Na 2s

levels, as obtained from a real calculation of a 512-atom supercell
containing a vacancy V+

Cl. The horizontal lines show the asymptotic
values of the single point charge potentials.
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the vicinity of the charge, the periodic potential appears
as shifted with respect to the isolated potential. At the
box boundary, the periodic potential experiences the two
neighboring point charges equally and therefore shows a
spurious plateau shape. We also introduced, with a dot-dashed
line, the isolated potential shifted by the Madelung potential
vM following Eq. (5). We observe that this shifted potential
closely reproduces the periodic potential in the vicinity of
the point charge but asymptotically converges to −vM . The
divergence of the shifted isolated point-charge potential from
the KS potential further away from the point charge would be
reduced if higher-order terms in the Makov-Payne expansion
were considered in Eq. (2). It is now obvious that the difference
between the periodic potential and the shifted isolated potential
is worst at the box boundary. Finally, in order to demonstrate
that our modeling bears some connection to reality, we added
the deviation in the 2s level of sodium with respect to bulk in
an actual 512-atom supercell calculation of a chlorine vacancy
V+

Cl. As shown by the diamonds in Fig. 2, the calculated
points and the periodic potential agree impressively well.
The positions of the Na2s levels are simply governed by the
screened electrostatic potential of the periodically replicated
charges in a compensating background.

Many authors have prescribed performing the potential
alignment by considering the electrostatic potential far from
the charged defect as the zero of the potential.8,9,13 In our
opinion, this approach presents several problems. First of
all, applying an electrostatic energy correction already brings
about a shift in the potential, proportional to 1/L. There is
no need, therefore, to introduce another electrostatic potential
alignment term that also goes as 1/L, as this leads to double
counting the same contribution. Second, when considering an
energy correction brought about by an electrostatic potential
shift, one needs to divide by a factor of 2, as shown when
going from Eq. (7) to Eq. (2). This is not always clear in other
potential alignment methods. Third, no matter how far from
the defect one measures the potential alignment and no matter
how large one makes the supercell, one can never recover
the infinite-limit correct potential, with its long-range 1/r

behavior. Fourth, considering the potential far from the defect
is precisely the position where the deviation of the periodic
potential from the isolated charge is the most striking: at the
box boundary, the potential is equally generated by charges
from different cells.

These conclusions show the crucial need to redefine the
potential alignment. This is the topic of the next section.

IV. DEFINING THE PROPER POTENTIAL ALIGNMENT

Our goal is now to find a proper definition for the potential
alignment �V introduced in Eq. (1). Potential alignment is
needed for charged defects since the formation energy of a
charged defect is a function of the Fermi level εF , i.e., the
energy of the electrons from a reservoir. The energy zero is
conventionally set to the top valence band of the bulk material,
and the Fermi level is usually varied within the range of the
band gap.

It was recognized very early on that the band structures of
defective supercells are shifted with respect to their pristine
counterparts and that, therefore, a potential alignment cor-

rection was needed.29 Unfortunately, the potential alignment
correction was mainly thought to correct for the spurious
electrostatic potential, even though this contribution is usually
already corrected through the electrostatic correction. Our
definition for the potential alignment is, therefore, deliberately
set up to ensure the electrostatic correction is not double
counted. We suggest a correction that provides a naı̈ve,
extremely simple measurement of the potential shift yet
performs surprisingly well, as we will show in the following.

We propose a scheme similar to that suggested in Ref. 17,
whereby the average of the total potential over the entire
supercell 〈vKS〉 is considered:

〈vKS〉 = 1

�

∫
�

drvKS(r), (8)

where � is the volume of the supercell. Why do we focus on
this particular quantity?

First, the total average potential is completely free of any
electrostatic contribution. Indeed, the average value of the
electrostatic potential in a periodic cell is conventionally set
to zero; otherwise, it would give rise to divergent terms.
By considering the average potential we ensure that the
electrostatic potential shift does not enter into the correction
again, having already taken care of it via the previously defined
�Eel term.

Second, a reference electron from the reservoir is one
delocalized in a region infinitely far from the defect. In Fig. 3,
this ideal situation is represented in the top schematic. The
delocalized electron experiences the KS potential of the perfect
bulk averaged over a large region. In practice, however, we
perform a supercell calculation (schematic in the bottom panel
of Fig. 3) where there is no region of space unaffected by
the defect. An infinitely distant delocalized electron would

< >

FIG. 3. (Color online) Schematics illustrating the role of the
potential alignment �V . (top) The system we intend to simulate: a
single charged defect Dq in a single supercell (dark blue), embedded
in the infinite bulk (light pink). (bottom) The system we actually
calculate with the supercell approach: an array of replicated defects
Dq. (middle) The corresponding running average potentials, with a
solid red line for the truly isolated defect and a dashed blue line for
the supercell approach.
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experience the KS potential of the defective supercell averaged
over a large region. The potential alignment �V represented in
the middle panel should, therefore, bring the average potential
of the defective cell onto the reference average potential of the
bulk cell:

�V = 〈
vbulk

KS

〉 − 〈
vdefect

KS

〉
. (9)

Note that this definition of the potential alignment differs in
sign with respect to the definition of some authors.9,23 This
potential alignment clearly states that the average potential
obtained from supercell calculations is erroneous and should
be corrected to fit the average potential of the pristine bulk.
Finally, it should also be noted that the value defined in
Eq. (8) is part of the standard output of the electronic structure
code used in this study,25 making evaluation of the potential
alignment defined in Eq. (9) extremely quick and simple.

Let us demonstrate for a selected case the quality of the
potential alignment we proposed in Eq. (9). As we intend
to isolate the effect of potential alignment without the other
corrections, we need it to be sizable. In Fig. 4 we considered the
negatively charged sodium vacancy in NaCl. This particular
case was chosen because one could expect a good performance
of the Madelung correction in this defect. Indeed, the charge
associated with the defect is very well localized; it is almost a
point charge even for the smallest supercells. An informative
sample case is a defect that is well converged after applying
an electrostatic correction and potential alignment. We need
this to hold even for small supercells, for which the potential
alignment is large and its effect can be seen most clearly. The
highly localized, nonshallow nature of the sodium vacancy
allows it to agree with this demonstrative requirement.
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FIG. 4. (Color online) Convergence as a function of the supercell
size of the formation energy of a sodium vacancy V−

Na. The raw ener-
gies are represented with circles. The Madelung corrected energies are
represented with squares. The data with potential alignment following
Eq. (9) together with the Madelung correction are represented by
diamonds. The data with potential alignment following Ref. 9 together
with the Makov-Payne monopole and quadrupole corrections are
represented by open triangles. The horizontal line represents our
converged value, and the thin dashed line is a tentative extrapolation
with the usual function γ1N

−1/3 + γ2N
−1.

After the usual Madelung correction, the potential aligned
data in Fig. 4 using Eq. (9) converge to the asymptotic value
extremely quickly. Note that with a supercell as small as 16
atoms, the potential alignment q�V is as large as 0.18 eV,
and applying it (along with the Madelung correction) leads
to a corrected formation energy less than 10 meV from its
converged value. This is somewhat compelling evidence that
the sign convention we introduced in Eq. (9) is correct.
For comparison, we also show in Fig. 4 results obtained
with a quite popular alternative correction scheme, which
combines the Makov-Payne correction (including terms up
to the quadrupole) and an electrostatic potential alignment, as
detailed in Ref. 9. As shown clearly in Fig. 4, our scheme
appears to be converging to a slightly different value and at
a much faster rate. Another correction scheme, detailed in
Ref. 10, has already been shown to yield similar results to
ours in the case of defects in NaCl, although it is rather more
complicated to implement.

Note also that the potential alignment goes to zero very fast
for larger supercells, as predicted. This may explain why, to
date, it has proved difficult for the defect community to reach
an agreement on the definition of potential alignment.

V. CORRECTING THE REMAINING NEIGHBOR’S
INTERACTION

After correcting the electrostatic energy and the Fermi
level with potential alignment, we are still left with some
unexplained, slowly converging terms. For instance, neutral
defects, which are unaffected by the two aforementioned
corrections, may sometimes also experience a very slow
convergence.30,31 This behavior can be attributed, at least in
part, to the quantum interaction between the defect and its
images. Instead of being localized around one single defect, the
defect-related wave functions can be delocalized over several
images. This hybridization may lead to a change in the defect
energy.

A similar behavior is observed and well documented in
the context of adatoms on surfaces, where effective lattice gas
models have been introduced.32 We will now follow the same
philosophy but simplify the situation by considering only a
single kind of neighbors. The effective Hamiltonian Hn for a
defect in a supercell interacting with n neighbors of the same
kind reads

Hn = H0 + nV, (10)

where H0 is the effective Hamiltonian with no neighbor
interactions and V is the magnitude of the neighbor-neighbor
interaction. The Hamiltonian H0 is the target quantity, and Hn

is the quantity obtained from a supercell calculation. In the
modeling of Eq. (10) we assumed two-body interactions only.

We then propose to fit the two parameters H0 and V of
the model in Eq. (10) with two ab initio calculations. The first
calculation is of a regular supercell, and the second calculation
uses a nonregular supercell, for which one direction has been
doubled. In doing so and assuming the next-nearest-neighbor
interactions are small, we vary the number of interacting
neighbors n and hence can extract the two parameters of the
model.
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FIG. 5. (Color online) Convergence as a function of the supercell
size of the formation energy of a chlorine vacancy V+

Cl. The raw ener-
gies are represented with circles. The Madelung corrected energies are
represented with squares. The data with potential alignment following
Eq. (9) together with the Madelung correction are diamonds. The
triangles represent the final data including the removal of the neighbor
interaction according to Eq. (10). The horizontal line represents the
converged value, and the thin dashed lines are tentative extrapolations
with the usual function γ1N

−1/3 + γ2N
−1.

The method is better explained with a practical example.
We consider the chlorine vacancy V+

Cl in NaCl in Fig. 5. In this
case, again, the Madelung correction together with the poten-
tial alignment already yields a significantly improved result:
the 16-atom supercell is converged to within 0.12 eV. NaCl is
a textbook example for an ionic compound. The binding of the
crystal is mediated through the isotropic Coulomb interaction.
It is hence most probable that the defect states are isotropic too.
As a consequence, we will assume that doubling the supercell
in one direction will cut the magnitude of the interaction with
neighbors by half. In practice, a calculation for a 16-atom
face-centered-cubic supercell (2 × 2 × 2 unit cells) provided
the value for Hn = 1.50 eV (after applying the Madelung
correction and potential alignment), and a calculation for a
32-atom elongated face-centered-cubic supercell (4 × 2 × 2
unit cells) set the value for Hn/2 = 1.45 eV. The extrapolated
value for no defect-defect interactions is then easily obtained:
H0 = 1.40 eV, which lies within 0.02 eV of the converged
value. The same procedure was also performed for larger
supercells with a very good accuracy, as shown in Fig. 5.
Our approach appears to be computationally relevant as well
since the calculations of two small supercells (16 atoms and
32 atoms) offer an accuracy superior to the calculation with
64 atoms.

The model we propose considerably speeds up the conver-
gence with respect to supercell size, at the expense of two
calculations instead of one and some knowledge of the system
under study. The approach crucially relies on the identification
of the important directions of the crystal, with respect to the
defect-defect interactions. In the case of NaCl, we assumed
that all directions are equally important. However, returning
to the case of silicon that we used as an introduction, we assume

that the defect-defect interactions are preferentially mediated
along the (110) zigzag chains of the diamond structure.20 We
thus considered the neighbors in these directions as the most
relevant for the hybridization of defect states and set the values
of n in Eq. (10) accordingly. When using a face-centered-cubic
supercell, the (110) directions are, indeed, the first-nearest
neighbors, and moving from a regular supercell to one doubled
in one direction drops the number of nearest neighbors from
12 to 6.

When using a simple cubic supercell, it is the second-
nearest neighbors that lie in the (110) directions. For ex-
tremely small simple cubic supercells, the assumption that
the hybridization occurs only along the (110) directions is
doubtful since the (100) neighbors are much closer. However,
in order to assess the simplicity and the robustness of the
present scheme, we will stick to our convention. For cubic
supercells, the number of (110) neighbors drops from 12
to 4 when the length of one side of the cell is doubled.
We used this framework to produce Fig. 6. First, note once
again the performance of our potential alignment represented
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FIG. 6. (Color online) Convergence as a function of the supercell
size of the formation energy of (top) a silicon interstitial Si2+

Tet and
(bottom) a silicon vacancy V2+

Si . The raw energies are represented
with circles. The Madelung corrected energies are represented with
squares. The data with potential alignment following Eq. (9) together
with the Madelung correction are diamonds. The triangles represent
the final data, which include the removal of the neighbor interaction
according to Eq. (10). The horizontal lines represent the converged
value, and the thin dashed lines are tentative extrapolations with the
usual function γ1N

−1/3 + γ2N
−1.

075155-6

136



UNDERSTANDING AND CORRECTING THE SPURIOUS . . . PHYSICAL REVIEW B 84, 075155 (2011)

with the diamonds. The triangles then show the final result
of the present study including our three corrections. The
agreement with the converged value is impressively good even
for supercells as small as 54 atoms. The effect of the shape
of the supercells becomes obvious: all the face-centered-cubic
supercells converge to the asymptotic value from one side, and
all the simple cubic supercells converge from the other. Finally,
we should stress that this hybridization correction can also be
utilized in the case of troublesome neutral defects. Indeed, the
correction should prove particularly useful in these cases since
the electrostatic and potential alignment terms do not apply.

VI. CONCLUSIONS

Calculations of charged point defects within the supercell
approach are impossible to converge with a brute-force ap-
proach. Even our calculated 4096-atom supercells for defects
in silicon still deviate largely from the asymptotic values. This
makes it clear that more subtle approaches need to be designed
and implemented. Many previous works addressed this issue,
utilizing many different approaches, but the situation remains
rather unsatisfactory.

The present contribution is twofold: a theoretical derivation
that demonstrates that the spurious electrostatic energy intro-
duced by the nonbalanced charge in the supercell induces a
shift in the potential and a practical scheme using three simple
corrections that significantly improve the convergence of the
supercell approach.

The practical scheme we propose is extremely robust and
simple and does not require additional coding. The only
unconventional data needed here are the Madelung constant for

nonregular cells. Our scheme reads (i) electrostatic correction,
(ii) potential alignment, and (iii) hybridization correction.
We showed that the simplest electrostatic correction of all,
namely, the Leslie-Gillan Madelung correction,3 is sufficient.
We then showed that, if this electrostatic correction is applied,
the potential alignment should be based on the total average
Kohn-Sham potential to avoid double counting of the slowly
converging 1/L term. Note that our definition uses a sign
convention opposite to the definition of many authors. Finally,
we could reduce the error due to the hybridization of defect
states onto several images by using a simplistic model
Hamiltonian and fitting it with two ab initio calculations. This
hybridization correction could also be applied just as well, in
principle, to the case of a slowly converging neutral defect.

Even though all the calculations presented here were based
on local density approximation (LDA), the scheme could also
be used in combination with hybrid functionals or the GW

approximation.33–35 The only cases that cannot be corrected
within our scheme are those of shallow defect states, which
are delocalized over regions that are impossible to fit into a
tractable supercell. Besides this limitation, the efficiency and
accuracy of our scheme has been impressive for all the cases
tested so far.
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The GW approximation to the electronic self-energy yields band structures in excellent agreement with
experimental data. Unfortunately, this type of calculation is extremely cumbersome even for present-day
computers. The huge number of empty states required both in the calculation of the polarizability and of the
self-energy is a major bottleneck in GW calculations. We propose an almost costless scheme, which allows us
to divide the number of empty states by about a factor of 5 to reach the same accuracy. The computational cost
and the memory requirements are decreased by the same amount, accelerating all calculations from small
primitive cells to large supercells.

DOI: 10.1103/PhysRevB.78.085125 PACS number�s�: 71.15.Qe, 71.20.Nr, 71.45.Gm

I. INTRODUCTION

Calculating the correct electronic band structure of a
solid, especially in the band-gap region, is not a trivial task
for ab initio methods. The commonly used density-functional
theory �DFT�1,2 is notoriously insufficient in that respect. To
get realistic band structure from the computer, one has to
resort to more accurate but also more cumbersome methods.
In this context, Hedin’s GW approximation3–5 to the elec-
tronic self-energy has encountered a wide success for sys-
tems where correlation effects are not strong. Unfortunately,
the cost of such calculations is generally two orders of mag-
nitude higher that their DFT counterpart. Furthermore, the
need to study nanowires, interfaces, or defects drives the
interest of the scientific community towards larger and larger
systems. It is urgent to find reliable techniques to speed up
the GW approach and make it tractable for a wider range of
applications.

The GW self-energy is a convolution of the Green’s func-
tion G and the screened Coulomb potential v�−1

���� =� d��G�� + ���v�−1���� , �1�

where v is the Coulomb interaction and �−1 is the inverse
dielectric matrix. The dielectric matrix in turn is obtained
from the random-phase approximation �RPA�

���� = 1 − v�0��� , �2�

with �0��� being the Kohn-Sham polarizability. A practical
GW calculations consists of evaluating the polarizability
�0��� and then of performing the convolution in Eq. �1�.

The main bottleneck in the efficiency of a GW calculation
is the dependence with respect to the empty states. In con-
trast with Kohn-Sham DFT, the two ingredients in a GW run,
i.e., the polarizability and the GW self-energy itself, both
involve explicitly the unoccupied states. The evaluation of
the GW band structure requires, first, calculating a huge
quantity of empty Kohn-Sham eigenvectors and eigenvalues
and, second, using them in sums running over all the states

of the system. The poor convergence of the GW approxima-
tion with respect to the empty states has been recognized
long ago.5–7 In order to be exact, the number of states should
be the same as the dimension of the Hilbert space that is
equal to the number of basis functions. In a plane-wave basis
or in a real-space representation, the dimension of the space
is huge �typically from thousand to millions�. As a conse-
quence, a speedup of the GW approach should address the
elimination or the reduction in the number of empty states in
the calculations. This direction has already been identified by
several other groups.8,9 However, the previously proposed
techniques are not widely used nowadays because of either
low efficiency or because the cost exceeds the benefits for
the available system sizes.

In the context of the optimized effective potentials, the
same problem arises—one needs to invert the empty state-
dependent Kohn-Sham polarizability in order to obtain the
local Kohn-Sham potential that represents best a nonlocal
exchange-correlation operator.10 For this framework, several
schemes have been developed to get rid of the empty states
dependence. In the 50’s, Sharp and Horton11 have already
proposed a rough approximation, which was then reused in
the celebrated Krieger-Li-Iafrate approximation of the
exchange-only potential.12 More recently, Gritsenko and
Baerends13 improved much on this approach with their com-
mon energy denominator approximation �CEDA�.

In this paper, we propose a technique that allows us to
reduce the number of unoccupied states required in the two
steps of a GW calculation �for the polarizability and the self-
energy� in a plane-wave implementation. In order to achieve
this goal, we transpose the CEDA trick of Gritsenko and
Baerends13 into the framework of the GW approximation.
For the polarizability step, this corresponds to a simple ex-
tension of the extrapolar method of Anglade and Gonze.14 By
replacing the eigenenergies of the states that are not treated
explicitly by a common energy, determined with respect to
the highest computed eigenstate through a single adjustable
parameter, we will be able to take into account all the states,
which are not explicitly included in the calculation through
the closure relation
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�
i�Nb

�i��i� = 1 − �
i�Nb

�i��i� , �3�

where Nb is the number of states explicitly included in the
calculation. The principle can be extended to other formula-
tions which have a large Hilbert-space dimension such as
real-space approach. This permits us to provide a correction
to the polarizability and to the self-energy that approximates
the effect of the states not explicitly taken into account. The
only drawback of the extrapolar approximation is the intro-
duction of a parameter that can be thought as ad hoc. In this
paper, we also present a formula that gives an ab initio
evaluation of this parameter.

In Sec. II, we focus on the computation of the polarizabil-
ity with a limited number of empty states. After developing
the corresponding equations, we examine the effect of the
number of empty states treated in the polarizability on the
GW corrections for the band gap of SiC. In Sec. III, we
propose to use the sum rule for the first moment of the di-
electric function to analyze the effect of the eigenenergy ap-
proximation as a function of the transferred momentum.
Thanks to a proper weight factor; the best value for the ad-
justable parameter might be determined. In Sec. IV, we per-
form the same approximation in the self-energy expression
assuming the dynamically screened Coulomb interaction to
be well represented by a generalized plasmon-pole model for
the large-energy transfers. The adequacy of this approxima-
tion increases with the number of states explicitly computed.
Unlike for the polarizability, no sum rule exists for the self-
energy. However, we argue that the value of the adjustable
parameter, optimized for the polarizability, is likely close to
the optimal value for the self-energy. We apply the method-
ology to the case of bulk SiC, to a 64-atom supercell of SiC,
to the insulator of argon, and also to an isolated benzene
molecule.

II. POLARIZABILITY WITH A LIMITED NUMBER OF
EMPTY STATES

In this section, we recapitulate the extrapolar approxima-
tion of Ref. 14 for the empty states that are not included
explicitly in the calculation and derive the corresponding
correction to the independent-particle polarizability �0.

The formulas are written here for spin-unpolarized and
nonmetallic systems, but they can be straightforwardly ex-
tended to spin-polarized systems and to metals by introduc-
ing fractional occupations. Using the time-reversal symme-
try, the independent-particle polarizability in reciprocal space
and frequency reads

�0GG��q,�� =
2

Nk�
�
k

Nv�i�Nb

j�Nv

Mkij�q + G�Mkij
� �q + G��

	� 1

� − �
kj − 
k−qi� − i�

−
1

� − �
k−qi − 
kj� + i�
	 , �4�

where � is the volume of the unit cell, Nv is the number of
valence states, Nk is the number of k points in the Brillouin
zone �the index k runs over the k points of the Brillouin
zone�, and where the matrix elements

Mkij�q + G� = �k − qi�e−i�q+G�.r�kj� �5�

are the so-called oscillator strengths.
In practice, the number of unoccupied states needed in

Eq. �4� can be very large in order to converge the value of
the self-energy calculated using this polarizability. In this
paper, the numerical applications are performed first on bulk
�-SiC, which is slightly more sensitive than the prototypical
bulk silicon to the number of states. The solid curve in Fig. 1
illustrates the convergence of the correlation part of the self-
energy at the top of the valence band and at the bottom of the
conduction band �and the resulting band gap� as a function of
the number of unoccupied bands considered in the calcula-
tion of �0. More than 100 empty states are required to obtain
the self-energy at the top valence 
15v with the typical accu-
racy of GW calculations, i.e., 50 meV. Furthermore, Fig. 1
shows that the convergence rate of the bottom conduction
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FIG. 1. �Color online� Convergence study of the correlation part
of the self-energy at top valence �upper panel� and at bottom con-
duction �middle panel� and of the band gap �lower panel� of �-SiC
as a function of the number of unoccupied states explicitly included
in the calculation of the polarizability. The solid curve shows the
usual GW result with no correction. The other curves include the
correction of Eq. �8� with different values for the energy parameter

̄�0

: 0.5 Ha , 1.0 Ha , 2.0 Ha, and 3.0 Ha above the last explicitly
calculated band.
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band X1c is not the same as of 
15v. Therefore, it would be
interesting to accelerate this poor convergence; thanks to a
properly defined correction.

The extrapolar approximation proposes to attribute to all
the states above Nb the same “average” high energy �̄�0

.
Obviously, this energy should lie higher than the energy of
the last actually calculated band. But so far, this energy is
considered as a parameter.

Let us define the correction �GG��q ,��, which is the
quantity neglected in Eq. �4� due to the truncation of the
unoccupied state sum. Introducing this average energy in this
correction allows one to change the order of the sums as
follows:

�GG��q,�� =
2

Nk�
�
k

j�Nv

� 1

� − �
kj − 
̄�0
� − i�

−
1

� − �
̄�0
− 
kj� + i�	

	 �
i�Nb

Mkij�q + G�Mkij
� �q + G�� , �6�

in which the only quantity depending on the empty states i
are the oscillator strengths Mkij�q+G�.

The closure relation can be straightforwardly applied to

�
i�Nb

Mkij�q + G�Mkij
� �q + G��

= �kj�ei�G�−G�.r�kj� − �
i�Nb

Mkij�q + G�Mkij
� �q + G�� ,

�7�

in order to get rid of the states above Nb. The final expression
for the correction to the independent-particle polarizability
within the extrapolar approximation is

�GG��q,�� =
2

Nk�
�
k

j�Nv

�kj�ei�G�−G�.r�kj�� 1

� − �
 j − 
̄�0
� − i�

−
1

� − �
̄�0
− 
kj� + i�	

−
2

Nk�
�
k

i�Nb

j�Nv

Mkij�q + G�Mkij
� �q + G��

	� 1

� − �
kj − 
̄�0
� − i�

−
1

� − �
̄�0
− 
kj� + i�	 .

�8�

The calculation of this correction does not require much
coding when the polarizability is already available. Further-
more, it produces very little overhead in the calculation time.
Indeed, the first term in Eq. �8� does not have any sum over
empty states and basically requires one fast Fourier trans-
form per k point and per occupied state. The second term can

be merged with the corresponding part in the calculation of
�0 for each triplet index �kij�. So it does not add any com-
plex operation. The calculation of the correction is really for
free.

The extrapolar approximation is not designed to yield the
right frequency-dependent polarizability. As this approxima-
tion replaces the many neglected high-energy transitions by a
single transition with a large weight, the imaginary part of
the polarizability would look like a single � peak at high
energy instead of a continuous spectrum. Nevertheless, one
can reasonably hope that this approximated polarizability,
when integrated, retains some physics. The GW self-energy
is precisely an integrated quantity as seen in Eq. �1�. Let us
check before this assumption on the static dielectric matrix.
The static dielectric matrix can be considered as an integra-
tion of the frequency-dependent dielectric function through
the Kramers-Kronig relation

Re
��� = 0�� = 1 +
1

�
P�

−�

+�

d��
Im
������

��
. �9�

Table I shows the convergence with or without correction of
the static inverse dielectric matrix. The value of the average
extrapolar energy 
̄�0

is referenced with respect to the highest
calculated energy 
Nb

. It can be observed from the data that
whatever the choice of the extrapolar energy �in a reasonable
range�, the convergence of diagonal and off-diagonal ele-
ments of the dielectric matrix is accelerated.

Now let us describe the quality of the extrapolar correc-
tion for the polarizability when it is used to evaluate the GW
self-energy. The performance for �-SiC is shown in Fig. 1.
Whatever the value of 
̄�0

, the convergence of the self-energy
and of the band gap is improved significantly; thanks to the
correction. When 
̄�0

is chosen too high with respect to the
last calculated band, the correction vanishes and the results
tend to the uncorrected one. When 
̄�0

is chosen too close to
the last calculated band, the correction is then slightly over-
estimated. The best fit is obtained for an average energy of
around 2.0 Ha above 
Nb

. If a reasonable value for 
̄�0
is

used, the number of empty states can be lowered to around
20 to achieve the 50-meV accuracy. This corresponds to five
times fewer states as without correction. As a conclusion, the
numerical application strongly supports the use of the correc-
tion to the polarizability.

III. USING A SUM RULE TO DETERMINE THE ENERGY
PARAMETER

In Sec. II, we have shown that the precise determination
of the average energy 
̄�0

is not crucial as it provides an
accurate correction for a wide range of 
̄�0

. However, it
would be desirable to have a tool, which measures the qual-
ity of a choice of an average energy 
̄�0

without knowing
before the exact target result.

A common procedure to assign the value of parameters is
to enforce the fulfillment of exact relations. For response
functions, there exists a class of integrals, of which the value
is known exactly. For instance, the first moment of the in-
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verse dielectric matrix �d�� Im �−1
q ,�� is fixed by the so-
called f -sum rule. This relation allowed Hybertsen and
Louie15 to calculate the free parameters of their model to
represent the inverse dielectric matrix.

In the present case, the evaluation of the f-sum rule would
not be adequate because it would require either modeling the
inverse dielectric function or performing a numerical fre-
quency integration subjected to discretization error. Instead,
another sum rule exists for the first moment of the dielectric
function itself;16,17

�
0

+�

d�� Im
�GG�q,��� =
�

2
�p

2, �10�

where �p=�4�n is the classical plasma frequency �n being
the average electronic density�. The sum rule in Eq. �10�,
although not valid in general, has been shown to be true for
the RPA dielectric matrix.17 The RPA is precisely the ap-
proximation used for the GW self-energy. In the present dis-
cussion, we will concentrate only on the diagonal elements
of the dielectric matrix since these elements yield by far the
largest contribution to the GW self-energy.

In the RPA approximation, the dielectric matrix is related
to the independent-particle polarizability through 
���=1
−v�0���, where v is the Coulomb potential. Hence, the sum
rule of Eq. �10� reads

�
0

+�

d��
4�

�q + G�2
Im
�0GG�q,��� = −

�

2
�p

2, �11�

in which 4� / �q+G�2 is the Fourier transform of the Cou-
lomb potential v.

The check of the validity of Eq. �11� provides a stringent
test on the completeness in the calculation of �0. If the sum
over states in Eq. �4� has been truncated, the integral in the
left-hand side of Eq. �11� will be too small. The advantage of
Eq. �11� with respect to the f-sum rule is that the evaluation
of the integral can be performed analytically, as the fre-
quency dependence of Im
�0���� consists only of a series of
� peaks; thanks to the classical identity

lim
�→0

1

� + i�
= P 1

�
− i����� . �12�

Practically, introducing the expression of Im
�0� in Eq. �11�,
it reduces to

4�2

Nk��q + G�2 �
k

Nv�i�Nb

j�Nv

�Mkij�q + G��2�
k−qi − 
kj� =
�

2
�p

2.

�13�

In the upper panel of Fig. 2, we report for �-SiC the
evaluation of the left-hand side of Eq. �13� as a function of
the transferred momentum �q+G� of different number of un-
occupied bands included in the calculation. When almost all
the states available are included in the calculation �550 un-
occupied bands�, the sum rule is verified for any value of
�q+G�. Contrastingly, when only a few empty states are
taken into account �e.g., ten unoccupied bands�, the sum rule
is only approximately satisfied for low transferred momenta.
This expresses the fact that well-separated occupied and un-
occupied states can couple through electronic transition with

TABLE I. Convergence study of some selected elements of the inverse dielectric matrix of �-SiC as a
function of the number of empty bands explicitly included in the calculation of the polarizability. The first
element is the macroscopic static dielectric constant. The second element is a diagonal element and the last
one is off diagonal.

Number of empty states �Nb−Nv�
Extrapolar energy �Ha� 4 10 20 50 200

1 /��000�,�000�
−1 �q→0,�=0� No correction 6.617 6.722 6.737 6.748 6.755

0.5 6.728 6.790 6.762 6.753 6.754

1.0 6.700 6.776 6.758 6.753 6.754

2.0 6.673 6.761 6.753 6.752 6.754

3.0 6.659 6.752 6.750 6.751 6.754

��100�,�100�
−1 �q→0,�=0� No correction 0.792 0.708 0.662 0.645 0.645

0.5 0.637 0.645 0.646 0.644 0.645

1.0 0.676 0.658 0.648 0.644 0.645

2.0 0.715 0.673 0.652 0.645 0.645

3.0 0.735 0.681 0.654 0.645 0.645

��100�,�01̄0�
−1 �q→0,�=0� No correction 0.037 0.030 0.027 0.026 0.026

0.5 0.026 0.026 0.026 0.026 0.026

1.0 0.029 0.027 0.026 0.026 0.026

2.0 0.031 0.028 0.027 0.026 0.026

3.0 0.032 0.028 0.027 0.026 0.026
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a large momentum. For large transferred momenta, the cou-
pling between far apart states cannot be neglected without
damaging the polarizability.

The bottom panel of Fig. 2 shows how the extrapolar
correction to �0 proposed in Eq. �8� affects the sum rule for
a fixed number of 20 unoccupied bands with different values
of the extrapolar energy parameter. All calculations that in-
clude the correction fulfill the sum rule with a much higher
accuracy than the reference curve without correction. The
completeness correction is a large step towards a fulfillment
of the sum rule, especially for large transferred momenta. By
using the present correction, it is possible that for some val-
ues of �q+G�, the sum rule gets overestimated. This can al-
low one to compensate for the underestimation of the highest
values of �q+G�.

As a consequence, a sensible approach is to seek for the
value of the extrapolar energy 
̄�0

, which in average allows
for the best compliance to the sum rule. The significance of
each transferred momentum has to be weighted by its impor-
tance in the subsequent GW self-energy calculation since the
ultimate goal is merely to evaluate GW band structures. The
contribution of the polarizability �0 in the GW correlation is
proportional to ��−1−1�v. In order to have a rough estimate
of this weight, we can assume that all the matrices �0, �, and

�−1 are diagonal and are considered in the static limit �
→0 since this is the dominating contribution. Under these
assumptions, the weight w assigned to the sum rule for the
momentum �q+G� is

w�q + G� �
1

�q + G�2

�GG

−1 �q,� = 0� − 1� . �14�

When applying this procedure to �-SiC with 20 unoccupied
states �the same conditions as the bottom panel of Fig. 2�, the
best choice of the average energy appears to be �1.6 Ha
above the last explicitly calculated band. This is in good
agreement with the quality of the curve with the average
energy 
̄�0

chosen at 2.0 Ha above the last band in Fig. 1.

IV. SELF-ENERGY WITH A LIMITED NUMBER OF
EMPTY STATES

In the expression of the GW self-energy as in the formula
of the polarizability, a sum over all the states is present. In
the present section, using the same procedure as the one
shown previously for the polarizability, we propose a correc-
tion to the self-energy that allows us to reduce drastically the
number of empty states required.

For the sake of simplicity, we show the derivation of di-
agonal matrix elements, but the extension to the off-diagonal
terms needed in self-consistent GW �Refs. 18 and 19� is
straightforward. The exchange part of the GW self-energy is
the Fock exchange operator and therefore does not involve
empty states. The diagonal matrix element of the correlation
part of the GW self-energy expressed in a plane-wave basis
reads15

�kj��c��kj��kj� =
i

2�Nk�
� d�� �

i�Nb

�
qGG�


WGG��q,���

− �GG�v�q + G��

	
Mji�q + G�Mji

� �q + G��
�� − 
k−qi + 
kj � i�

, �15�

where � is a vanishing positive real. The sign in front of � is
plus when the state i is empty and minus otherwise.

The correction we propose is again to account for the
states i�Nb through an extrapolar energy 
̄�. This permits us
to interexchange the order of the sum over bands and all the
rest except the oscillator strengths in Eq. �15�. Then, we can
apply the closure relation written in Eq. �7�. Hence, the ex-
trapolar correction �kj to the self-energy reads

�kj =
i

2�Nk�
� d�� �

qGG�

WGG��q,��� − �GG�v�q + G�

�� − 
̄� + 
kj + i�

	 ��kj�ei�G�−G�.r�kj� − �
i�Nb

Mji�q + G�Mji
� �q + G��	 .

�16�

We now have to evaluate the frequency integral in the ex-
pression of the correction �kj. According to the polar struc-
ture of W���, which is a time-ordered quantity in the Green’s

0.5 1
0

π/2 ω
p

2

10 empty bands
20 empty bands
50 empty bands

100 empty bands
200 empty bands
550 empty bands

0 0.5 1
| q + G | [a.u.]

0

π/2 ω
p

2

no correction
correction: +0.5 Ha
correction: +1.0 Ha
correction: +2.0 Ha
correction: +3.0 Ha

FIG. 2. �Color online� Upper panel: Value of the integral in Eq.
�10� as a function of the transferred momentum �q+G� without any
correction using 10, 20, 50, 100, 200, and 550 empty bands in
�-SiC. Lower panel: Value of the integral in Eq. �10� as a function
of the transferred momentum �q+G� with 20 empty bands using no
correction or a correction with an average energy 
̄�0

of 0.5, 1.0,
2.0, and 3.0 Ha above the last explicitly calculated band in �-SiC.
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function theory, only the pole located in ��= 
̄�−
kj contrib-
utes to the integral by virtue of the residue theorem. The
corresponding residue invokes just the antiresonant part of
W�
̄�−
kj�, i.e., the part of W having poles in the upper part
of the complex plane. The energy difference 
̄�−
kj is large
in practice because 
kj is typically located in the vicinity of
the Fermi level and 
̄� will be a “high” energy �above the last
one explicitly treated in the calculation�. As a consequence,
the function W��� in the residue is evaluated only for large
values of �. It is a general result16 that the dielectric function
of an electron gas tends to a single plasmon pole in the limit
�→�.

Hence, in the calculation of the correction �kj, we will
assume that the dynamically screened Coulomb interaction is
well represented by a generalized plasmon-pole model15

even though the plasmon-pole model is not used to calculate
the self-energy itself. In other words, the plasmon-pole
model is much better justified for the correction �kj to the
self-energy than for the self-energy itself. The plasmon-pole
approximation models the dynamically screened Coulomb
interaction as

WGG��q,��� = �GG�v�q + G�

+
�GG�

2 �q�

2�̃GG��q�� 1

� − �̃GG��q� + i�	
	�−

1

� + �̃GG��q� − i�	v�q + G�� ,�17�

where �̃GG��q� and �GG�
2 �q� are parameters determined by

simple fits on the ab initio calculated dielectric matrices.
With this model for W���, the frequency integration in Eq.
�16� is performed analytically and yields the final expression
for the correction

�kj =
1

Nk�
�

qGG�

�GG�
2 �q�v�q + G�

2�̃GG��q�
�̃GG��q� + 
̄� − 
kj − i��

	 ��kj�ei�G�−G�.r�kj� − �
i=1

Nb

Mji�q + G�Mji
� �q + G��	 .

�18�

The first term of the correction �kj is almost costless since
it does not involve the sum over states. The second term can
be grouped with the usual evaluation of the GW self-energy
where all the ingredients to build it are freely available. Note
that usually the GW self-energy is calculated for several fre-
quencies since the self-energy is a dynamical operator. Yet
the correction can safely be assumed static because the en-
ergy 
kj is merely present inside the differences 
̄�−
kj,
which are large in all cases.

Here, we can compare our extrapolar-approximation-
based correction to the coulomb hole plus screened exchange
�COHSEX�-based correction of Tiago and Chelikowsky.9

The basic idea is similar—make the denominator indepen-
dent of the unoccupied state energy with index i—as in Eq.
�18� so that one can factorize the denominator out of the sum
and apply the closure relation. In Ref. 9, the authors chose to

neglect energy differences 
k−qi−
kj with respect to the plas-
mon frequencies �̃GG��q�. In doing so, the static screening
appears in the expression as in the COHSEX approximation
to the self-energy. This choice may not be optimal since,
when one wants to account for the high-energy bands, the
energy differences are typically large compared to the
plasma frequency of the system. Instead, the approximation
proposed here is to disregard the energy dispersion of the
high-energy bands and keep it fixed to an average value 
̄�.
In other words, our approximation assumes that the energy
dispersion of the empty states 
k−qi− 
̄� is small compared to
the difference �̃GG��q�+ 
̄�−
kj. This is much more realistic
in the typical applications and becomes even better when the
number of empty bands is increased.

In Fig. 3, we test the performance of the proposed correc-
tion in a convergence study of the matrix elements of the GW
correlation self-energy and of the band gap of �-SiC with
respect to the number of unoccupied states explicitly in-
cluded in the calculation. Consistently with the convergence
study on the number of empty states used in �0, the conver-
gence of the results without correction is very slow. In order
to achieve the typical accuracy of a GW-band structure
��50 meV�, 100 to 200 unoccupied bands are required.
Note that, as usual, the band gap converges faster than the
absolute positions of the GW energies. When the correction
is turned on, the convergence becomes much smoother and
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FIG. 3. �Color online� Convergence study of the correlation self-
energy at top valence �upper panel� and at bottom conduction
�middle panel� and of the band gap �lower panel� of �-SiC as a
function of the number of unoccupied states explicitly included in
the calculation of the self-energy.
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the value of the correction does not depend strongly on the
chosen average energy 
̄�. Only 20 bands are necessary to
converge the band gap within 50-meV, whereas 50 bands are
needed to converge the absolute position of the top valence
band named 
15v.

The evaluation of the optimum average energy 
̄� for the
extrapolar approximation cannot be based on an exact
scheme since no sum rule exists for the self-energy. Fortu-
nately, a direct analogy between �0 and � can be
underlined—they both contain a truncated sum over empty
states and the summand is for both the squared modulus of
the oscillator strengths divided by an energy difference. Yet,
the denominator in � differs from the one of �0 by the pres-
ence of the plasmon-pole frequencies �̃GG��q�. In average,
these frequencies �̃GG��q� lie closely to the classical plasma
frequency of the system. Considering that in the practical
case the plasma frequency is small compared to the energy
differences, we can expand the denominator as a function of
the small quantity �̃GG��q� / �
k−qi−
kj�. The leading term in
this expansion of the denominator does not involve the quan-
tity �̃GG��q�;

1


k−qi − 
kj + �̃GG��q�
�

1


k−qi − 
kj
�1 −

�̃GG��q�


k−qi − 
kj
	 .

�19�

This shows that the determination of the extrapolar energy
for the self-energy 
̄� is to the zeroth order—the same as the
determination of the extrapolar energy for the polarizability


̄� � 
̄�0
. �20�

In the case of �-SiC with 20 unoccupied states, the evalua-
tion of 
̄�0

gave 1.6 Ha above the last band energy. This
value would be also suitable for 
̄� as can be judged from
Fig. 3.

V. APPLICABILITY

In order to show that the present scheme possesses a wide
range of applications, we further carried out calculations for
a supercell of bulk �-SiC and for two other very different
systems: a wide band-gap insulator, solid argon and a ben-
zene �C6H6� molecule in gas phase.

In Fig. 4, we examine the convergence with the number of
unoccupied states explicitly included in the calculation for a
64-atom �-SiC supercell. The tendencies observed for the
small unit cell here are even more pronounced. We could not
achieve convergence within 50 meV of the uncorrected GW
band gap even using almost 1400 empty states. In contrast,
applying the proposed correction with the optimal extrapolar
energy as evaluated according to the sum rule Eq. �10� al-
lows us to have an accurate evaluation of the GW band gap
with as few as 320 unoccupied states. By extrapolation, we
can evaluate that the uncorrected GW would require about
3000 empty bands to achieve the same convergence.

As previously noticed,19 the GW band gap of argon is
much smaller than the experimental value �14.2 eV�. How-
ever, this is not the point here. Figure 5 shows the conver-

gence of the top valence, bottom conduction correlation self-
energy, and band gap of this insulator. Once again, the
extrapolar approximation performs extremely well even bet-
ter than in the case of silicon carbide; the number of empty
states can be reduced from 200 to 20.

The calculation of finite systems with periodic boundary-
condition code should be considered with care, especially for
the GW framework, which has long-range interactions. To
mimic an isolated benzene molecule, we use a 40-bohr-long
box in face-centered cubic geometry. In addition, the Cou-
lomb interaction has been suppressed beyond 20 bohr.20,21 As
the stress is placed on the convergence behavior and not on
the system properties, we applied the usual perturbative pro-
cedure for the GW evaluation. But we know that this is not
sufficient as shown by Tiago and Cheliskowsky.9 The con-
vergence is displayed in Fig. 6. Without the extrapolar ap-
proximation, it would not have been possible to produce a
reliable result even considering 1000 empty states. By con-
trast, we are able to obtain an evaluation of the highest oc-
cupied molecular orbital �HOMO�-lowest unoccupied mo-
lecular orbital �LUMO� gap with only 200 bands and an
absolute energy position of the HOMO and the LUMO with
500 bands.
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FIG. 4. �Color online� Convergence study of the correlation self-
energy at top valence �upper panel� and at bottom conduction
�middle panel� and of the band gap �lower panel� of �-SiC in a
64-atom cubic supercell as a function of the number of unoccupied
states explicitly included in the calculation of the polarizability and
in the self-energy.
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VI. CONCLUSION

The number of empty states to be used in present imple-
mentations of the GW approximation with a plane-wave ba-
sis hinders the use of the method for large-scale applications.
We have provided here a technique based on the closure
relation and the adequate approximation for the eigenener-
gies of states not treated explicitly largely reduces the pref-
actor in CPU time and in memory needs. This technique is a
generalization of the extrapolar approximation of Ref. 14 and
is similar to CEDA developed in the framework of optimized
effective potential method by Gritsenko and Baerends.13 The
gain is already large for bulk cells and it will allow one to
consider applications to systems that were previously out of
reach of the GW method.

We have emphasized that the completeness in the Hilbert
space is critical in order to have full convergence of the GW
band structure. A critical tool to measure this completeness is
the fulfillment of the sum rule in Eq. �10�. Using this rela-

tion, we have been able to estimate the correct range for the
energy parameter to be introduced in the extrapolar approxi-
mation. With this determination, the proposed scheme can be
considered as ab initio.

One immediate application of the presented acceleration
technique is the GW evaluation of band alignment in junc-
tions, which requires the absolute positions of the GW en-
ergy levels.22
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FIG. 5. �Color online� Convergence study of the correlation self-
energy at top valence �upper panel� and bottom conduction �middle
panel� and of the band gap �lower panel� of solid argon as a func-
tion of the number of unoccupied states explicitly included in the
calculation of the polarizability and in the self-energy.
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FIG. 6. �Color online� Convergence study of the correlation self-
energy at HOMO �upper panel� and at LUMO �middle panel� and of
the band gap �lower panel� of the benzene molecule �C6H6� as a
function of the number of unoccupied states explicitly included in
the calculation of the polarizability and in the self-energy.
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a b s t r a c t

We employ the GW approximation to calculate the properties of the carbon vacancy, a prominent defect
in irradiated 3C-SiC. The GW method has been recently proposed for point defects in order to cure the
band gap problem of the usual approximations. However, its application relies on stringent approxima-
tions, such as the calculation of the relaxation energies of the atomic structures from another simpler
approximation, namely the local density approximation. We assess here the validity of this approach
in the complex case of the carbon vacancy. Finally, the calculated properties of the carbon vacancy are
greatly affected by the use of the GW approximation with respect to earlier studies. The carbon vacancy
is a rather shallow donor with a negative U behavior.

� 2011 Elsevier B.V. All rights reserved.

Cubic silicon carbide (3C-SIC) is a material with great potential
for nuclear applications, both for next generation fission reactors
and fusion reactors [1]. Materials in nuclear environments are sub-
jected to high energy irradiations that create numerous intrinsic
defects. In order to characterize and understand the elementary
physical processes, it is highly relevant to gather accurate data
for the important point defects created upon irradiation. A previ-
ous study of ours was devoted to the properties of the silicon va-
cancy in 3C-SiC [2]. The present article is meant to complement
that data for another important defect of silicon carbide, the carbon
vacancy VC.

The calculation of the properties of point defects by a first-
principles approach needs care for semiconductors and insulators.
Indeed, defects in semiconductors and insulators can carry a
charge due to the presence of defect states in the band gap. The de-
fect states can be occupied or empty according to the relative posi-
tion of the Fermi level le with respect to the defect level. It is
therefore crucial to have a proper description of the band gap
region. Unfortunately, it is well known that the standard ab initio
approaches based on the local density approximation (LDA) or
generalized gradient approximation (GGA) completely fail in that
respect. This shortcoming is named the band gap problem [3]. For
many physical properties, this band gap problem is not particularly
significant. However, for point defects in semiconductors and insu-
lators, this drawback greatly affects the validity of the calculated
data. This situation was clarified only recently.

In the present study, we follow the approach of Rinke and coau-
thors [4] that made the calculation of point defects accessible to
the GW approximation [5,6]. The GW approximation is a well
known approximation of many-body perturbation theory that

yields very good band gaps at the expense of cumbersome calcula-
tions [7]. It is therefore very tempting to apply this approach de-
void of any band gap problem to the study of point defects.
However, the difficulties are of two kinds at least: firstly the calcu-
lations are so heavy that the calculation of a point defect in a large
periodic supercell is not tractable, and secondly the GW approxi-
mation does not easily yield total energies nor forces (it just gives
one-electron level energies).

The first bottleneck, the limitation due to the system size, has
been pushed away due to the progresses in modern computers
and also in algorithms [8], so that the calculations of this study
dealing with supercells of as many as 215 atoms do not represent
a real computational challenge. The second bottleneck, namely the
missing expression for the total energy, requires combination of
the GW approximation with the usual LDA, as proposed in Ref.
[4]. The combination of the GW approximation for charge changes
together with LDA for structural changes is a simple and attractive
scheme. However, the validity of such a partition has always been
taken for granted and no analysis about its limitations has been
performed to our knowledge. We hence would like to seize the
opportunity to clarify the situation in the present article.

A crucial quantity for charged defects is the thermodynamic
transition energy, eth. This is the Fermi level at which the most sta-
ble charge changes. This quantity is defined in the specific case of
the carbon vacancy as

ethð2þ =1þÞ ¼ E0ðV1þ
C ;1þÞ � E0ðV2þ

C ;2þÞ ð1Þ

where E0(V1þ
C , 1+) stands for the energy of the system in charge state

1+ having the relaxed geometry of V1þ
C . Note that these energies are

usually referred to the valence band maximum of the pristine solid.
The GW approximation allows one to obtain the transition energy
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of a defect for a fixed structure only. This is the so-called vertical tran-
sition energy, ev,

evð2þ =1þÞ ¼ E0ðV2þ
C ;1þÞ � E0ðV2þ

C ;2þÞ ð2Þ

The only difference between Eq. (1) and Eq. (2) is the structure in
the first total energy. One can easily insert the definition of ev into
Eq. (1) by adding and subtracting the same total energy:

ethð2þ =1þÞ ¼ E0ðV1þ
C ;1þÞ � E0ðV2þ

C ;1þÞ þ E0ðV2þ
C ;1þÞ

� E0ðV2þ
C ;2þÞ ð3Þ

The first two energies together account for a structural change at
the constant charge 1+ and the last two energies are precisely the
vertical transition energy that can be calculated within the GW
approximation [2,4,9].

The point we want to address here is the arbitrariness in the in-
serted total energy in Eq. (3): any quantity that is added and sub-
tracted could have done a similar job. For instance, one could have
inserted the energy E0(V1þ

C , 2+), or even other energies. We are now
about to investigate the quality of this assumption in the specific
case of the carbon vacancy of 3C-SiC.

The case of VC is indeed interesting because, due to the band gap
problem of LDA, the ideal construction explained above is con-
strained by the position of the defect state. The band gap problem
is indeed quite large in the case of 3C-SiC: the LDA band gap is only
1.35 eV to be compared to 2.19 eV within GW, and 2.37 eV in the
experiment. The position of the important defect state that is to
be filled when going from charge state 2+ to charge state 0 should
lie in the band gap.

In Fig. 1 we provide the position of the defect state within LDA,
superimposed onto the LDA band structure of bulk 3C-SiC along
the U-R high symmetry line of the cubic supercell. The Brillouin
zone of the bulk has been folded in order to mimic a cubic supercell
of 216 atoms, similar to the one employed for the vacancy calcula-
tions. The position of the defect state is provided for the three rel-
evant equilibrium geometries, V2þ

C , V1þ
C , and V0

C. The defect levels
do not require any sizeable shifting procedure to get aligned onto
the pristine bulk bands. Furthermore, charge corrections are

avoided here, since we experienced in our previous works that
they rather deteriorates the convergence rate for vacancies [2,10].

One immediately notices that in the case of the 2+ and 1+ geom-
etries, the defect level can lie above the conduction edge. For
charge state 1+, this defect state should be occupied with one elec-
tron. This situation will cause problems since the standard minimi-
zation procedure would place the electron not in the defect state
but rather in the bottom of the conduction band, which is lower
in energy. However, this does not properly represent a carbon va-
cancy V1þ

C . Note that due the use of shifted k-points following the
Monkhorst–Pack scheme [11] the defect state remains below the
conduction band in the center of the U-R line, even in the 1+ case.
Of course, if we could employ a very large supercell, the Brillouin
Zone would eventually be so small that the conduction band would
be completely folded into its minimum at U and the defect state
would again be higher than the conduction band.

The most simple workaround to deal with the situation shown in
Fig. 1 would be to insert in Eq. (3) the intermediate energy of the neu-
tral geometry, E0(V0

C, 2+). This would be our advice in general, but we
would like to show that this intuitive workaround is indeed justified.

In Fig. 2, we provide three different possible paths that could be
implemented in Eq. (3) to calculate the thermodynamic transition
eth(2+/1+). We propose the use of either the intermediate struc-
tures V2þ

C , V1þ
C , or V0

C. The combination of the different vertical tran-
sitions obtained with the GW approximation together with the
different structural changes obtained within LDA should, in princi-
ple, give the same result. Let us start with the intermediate struc-
ture V0

C: the system in charge 2+ is first distorted to the structure of
charge 0 giving an increase in energy of 1.81 eV, then the charge is
changed from 2+ to 1+ with an energetic cost of 0.83 eV obtained
from GW, and finally the structure on the 1+ Born-Oppenheimer
surface is relaxed to the equilibrium final position V1þ

C , with an
energetic gain of 0.50 eV. Altogether this path gives a thermody-
namic transition eth(2+/1+) of 2.14 eV. If we use the same reasoning
with the intermediate geometry V1þ

C we obtain a quite similar va-
lue of 2.19 eV. This error of only 0.05 eV is very encouraging: the
usual uncertainty of any GW calculation is of the same order of
magnitude.

Fig. 1. Defect levels of the carbon vacancy VþC (red lines) as obtained from LDA for
three different equilibrium geometries for charge states 2+, 1+, and 0, along the C–R
line. The position of the defect state is compared to the valence and conduction
bands of the pristine SiC in a 216 atom supercell drawn with the shaded areas.
When the vacancy bears a 1+ charge, the defect level for spin up is occupied with
one single electron (solid red line) and the defect level for spin down remains empty
(dashed red line). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 2. Schematic Born-Oppenheimer surfaces for charge states 2+ and 1+ of the
carbon vacancy. The horizontal axis designates the three equilibrium structures for
charge states 2+, 1+, and 0. The corresponding point group of the configurations as
well as distances between the first neighbors of the vacancies are specified. The
energy differences on the same surface are obtained from LDA, whereas the vertical
transitions at constant geometry are obtained from the GW approximation. The
energy values for the vertical transitions are referred to the bulk valence band
maximum. The (orange) upward arrows designate the energy for adding an electron
to V2þ

C . The (pink) downward arrow shows the energy for removing an electron to
VþC . The red difference of energies has been obtained by quenching the occupations
of the 2+ geometry, in order to populate precisely the defect states above the
conduction edge. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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If we would like to investigate the path through the geometry
V2þ

C as well, we should be extremely cautious. As shown in Fig. 1,
the defect state that we want to place an electron in lies above
the conduction edge. Therefore, in order to obtain a truly occupied
defect state, one should first identify which electronic state corre-
sponds to the defect, and then one should enforce the occupation
of this precise electronic state (one should not rely on the usual
minimization scheme). In Fig. 2, the vertical transition reported
for geometry V2þ

C is not the energy of the first (degenerate) empty
states that correspond to the conduction states, but the transition
to the threefold degenerate defect states. We then calculate the
LDA energy of this geometry with a constrained occupation of
the threefold degenerate defect states. The standard minimization
procedure would have transferred this electron into the lowest
available empty state, namely the bottom of the conduction band.
Using this non-standard procedure, we have been able to evaluate
the value in Eq. (3) properly, using the intermediate geometry V2þ

C .
We finally obtained 2.23 eV for the transition eth(2+/1+). This last
value agrees impressively well with the other two paths
(�0.1 eV) if we consider all the non-standard procedures we had
to use in order to force the system through this peculiar path.

The combination of LDA for structural changes and GW for
charge changes appears to be a reliable technique to obtain ther-
modynamic transitions of the carbon vacancy. Even though the dif-
ferent paths we have tested have very different structures,
different point groups (Td or D2d), and different energies (up to
1.43 eV difference), the error bar of the combination LDA + GW is
evaluated as less than 0.1 eV.

We finally use the previously described scheme to produce the
formation energy of the carbon vacancy for the different relevant
charge states. The formation energy is a central value for the com-
parison with respect to experiment. The formation energy of the
carbon vacancy in 3C-SiC has been studied extensively in the past
[12–15]. However, the previous studies all suffered from the ubiq-
uitous band gap problem.

In Fig. 3, we provide the formation energy as a function of the
Fermi level for the carbon vacancy for the LDA and GW approxima-
tions. The formation energy of the carbon vacancy with charge q,
Ef(V

q
C), is defined, in the silicon-rich conditions, as

EfðVq
CÞ ¼ E0ðVq

CÞ � E0ðperfectÞ þ ðl0
SiC � l0

SiÞ þ qle ð4Þ

where l0
SiC and l0

Si stand for the reference chemical potentials of
bulk SiC and of bulk Si. The slope of the lines in Fig. 3 is hence given
by the charge state q. The difference between the formation ener-
gies of different charge states is closely related to the thermody-
namic transition energies, eth, as defined in Eq. (1).

The GW results in Fig. 3 were obtained by introducing the inter-
mediate geometry V0

C in Eq. (3). The use of this geometry made the
calculations more straightforward, as explained above. There is
also another subtlety: the electron addition energies and electron
removal energies are slightly different in the GW approximation,
as shown by the upward and downward arrows in Fig. 2. This point
was discussed extensively in Refs. [16,9] and is cured by consider-
ing the average value of the addition and removal energies.

Fig. 3 shows the differences and similarities between the LDA and
GW formation energies. Both describe the carbon vacancy as a neg-
ative-U center: the charge state 1+ is never stable for any Fermi level.
The charge states jumps from 2+ directly to 0 with increasing Fermi
levels. The LDA charge transitions are bound to the too small LDA
band gap. In the present evaluation they are not strictly below the
LDA conduction edge because we employ a shifted k-point grid that
does not sample the conduction edge at U. In the limit of large super-
cells, it is doubtless that the LDA transitions would all decrease to the
conduction edge. The GW transition energies span almost the full
range of the experimental band gap. The GW results show that
the carbon vacancy is a rather shallow donor type defect with
eth(2+/0) = Ec = 0.26 eV. This value gives hints for the search of the
photoluminescence peak related to the carbon vacancy [17].

As a conclusion, we have presented here some technical assess-
ments about the promising technique LDA + GW that allows one to
get rid of the famous band gap problem. Indeed, this framework re-
lies on assumptions that had not been extensively tested previ-
ously. The carbon vacancy has defect states that are placed above
the conduction edge for some configurations and therefore it is
very intricate for the LDA + GW approach. Even in this complicated
test case, the combination LDA + GW has a low error bar evaluated
as less than 0.1 eV. With this reliable method at hand, we were able
to provide the formation energy of the carbon vacancy, which
showed that the carbon vacancy is a quite shallow double donor.
Our results deviate noticeably from the earlier studies that pre-
dicted the carbon vacancy to be a deep double donor [13,15].

We are indebted to Guido Roma for discussions and to Samuel
E. Taylor for carefully proofreading the manuscript. The present
calculations were based on the ABINIT code [18]. This work was
performed using HPC resources from GENCI-CINES and GENCI-
CCRT (Grant No. 2011-gen6018).
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A stringent test for an exchange-correlation approximation in electronic structure calculations is the

equality between the ionization energy of the neutral system and the affinity of the singly positively

charged system. All of the commonly used approximations (local, semilocal, hybrid) for the exchange

correlation within density functional theory fail badly with this test. They consequently present a

localization or delocalization error, resulting in a highest occupied molecular orbital or lowest unoccupied

molecular orbital gap over- or underestimation. The GW approximation appears as the best available

framework to describe particle number changes. The small remaining error can be further reduced by

devising a �SCF-like method within the GW approximation. The proposed approach is necessary as soon

as localized states are involved, e.g., in finite systems or defect states in crystals.

DOI: 10.1103/PhysRevLett.103.176403 PACS numbers: 71.15.�m, 32.10.Hq, 71.10.�w, 71.55.�i

For many years, density functional theory (DFT) has
been seeking for the most correct approximation for the
exchange-correlation functional [1]. The exact exchange-
correlation term is of course unknown, since it has to
account for all the quantum effects contained in the
Schrödinger equation for interacting electrons. Several
shortcomings of its existing approximations have been
identified. A crucial issue for the available exchange-
correlation functionals is the behavior of the energy along
with the change of the number of electrons. Practical
difficulties are tightly related to that problem: for instance,
the infamous band gap problem arises from the poor de-
scription of electron addition and removal for most of the
existing functionals.

Generalizing the idea of particle number changes to
fractional number of electrons, it has been shown [2,3]
from ensemble arguments that the total energy should be
linear in between integral numbers of electrons.
Unfortunately, all the usual approximations fail with this
crucial property: local density approximation (LDA) and
generalized gradient approximation (GGA) are convex,
whereas Hartree-Fock (HF) is concave [4]. The straight
line behavior arising from the exact exchange correlation is
not just a playground for theoreticians. Indeed, the first
ionization energy I can be obtained as the derivative on the
left-hand side of the total energy with respect to the num-
ber of particles and the electron affinity A can be reached
by the derivative on the right-hand side. If the slope of the
total energy between N � 1 and N electrons is not a
constant, the electron affinity of the N � 1 electron system
is not to be equal to the ionization energy of the N electron
system, even though they should represent the same total
energy difference:

AðN � 1Þ ¼ �@E0

@n

��������n¼ðN�1Þþ
¼ E0ðN � 1Þ � E0ðNÞ

(1)

IðNÞ ¼ �@E0

@n

��������n¼N�
¼ E0ðN � 1Þ � E0ðNÞ; (2)

where E0ðNÞ is the ground-state energy of the system with
N electrons. The þ and � signs indicate the side of the
derivative. In most cases, the derivative reduces to the
eigenvalue thanks to the Janak’s theorem [5].
In a recent work, Cohen, Mori-Sánchez, and Yang [4,6]

have clarified the relation between convexity or concavity,
localization error and band gap error. The convex approx-
imations, like LDA or GGA, lower the energy in spreading
electrons as much as possible so that a fractional number of
electrons is preferred. The concave approximations, like
HF, instead find energetically favorable to localize elec-
trons so that they integrate to an integer. HF is indeed a
quasiparticle theory, which relies on integral number of
particles. The true exchange correlation should be insensi-
tive to these two situations. Only in this case, the total
energy difference, called �SCF method, is to match the
eigenvalue estimate of the ionization or affinity.
Originating from an other framework, many-body per-

turbation theory, the GW approximation to the exchange
correlation [7] has been extremely powerful in describing
the band structure of solids [8,9]. The GW approximation
is an improvement over the HF approximation. It is based
on the concept of screened Coulomb interaction. In prac-
tice, the GW approximation is usually evaluated as a first-
order perturbation with respect to LDA, in the so-called
G0W0 approach. This assumes, in particular, that the LDA
and the G0W0 wave functions are identical. The currently
best implementation of the GW approximation, the quasi
particle self-consistent GW (scGW) [10–12], proposes a
static approximation to the complete GW case, which
allows one to recalculate self-consistently the GW wave
functions and eigenvalues. This approach is compulsory in
the case of atoms and molecules, as shown in the
following.
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In the present Letter, we evaluate the quality of local,
hybrid, and GW approximations to the exchange correla-
tion in terms of localization error, band gap error, and
ionization or affinity consistency. By testing them on small
sodium clusters, we show that the GW approximation
prevails over all the usual exchange-correlation approxi-
mations. The small remaining error in the ionization or
affinity determination can be integrated in the framework
in devising an extension of the �SCF procedure to theGW
approach. We finally demonstrate the effectiveness of the
procedure for localized defect states in a crystal.

It is unfortunately difficult in practice to obtain the total
energy within the GW framework. Furthermore, the gen-
eralization of the GW equations to fractional numbers of
electrons would require some care. As a consequence, we
propose two alternative routes to evaluate the behavior of
theGW approximation as a function of a fractional number
of electrons. (i) Analyze theGW wave functions of an extra
electron (or hole) in a doubled system: consider the system
of two distant molecules with one additional electron. Will
the extra electron be spread onto the two molecules or will
it localize on one of them? (ii) Compare the ionization
energy of a neutral system with the affinity of the positively
charged one. If �AðþÞ<�Ið0Þ [�AðþÞ>�Ið0Þ], the
approximation is to be convex (concave). Furthermore,
the difference between Ið0Þ and AðþÞ evaluates the mag-
nitude of the localization error.

Following our route (i), we considered a system consist-
ing of two distant molecules of Na2 in a supercell with one
extra electron. The technical details are provided below. If
the chosen scheme were exact, the extra electron spread
onto the two molecules or the electron localized on one
single molecule should be two stationary points of the
functional giving the same total energy. LDA is subjected
to delocalization error so that the extra electron has an
equal weight on the two molecules. The panel (a) of Fig. 1
represents the LDA highest occupied molecular orbital
(HOMO) that places half an electron on the two molecules.
Note that the lowest unoccupied molecular orbital
(LUMO) is degenerate with the HOMO within LDA. The
HF framework localizes easily the extra electron on one of
the two molecules and breaks the HOMO/LUMO degen-
eracy. We performed then scGW calculations starting ei-
ther from HF and from LDA. Initiating the scGW
evaluation from the HF wave functions leads to a rapidly
converging result, which maintains the extra electron on
one Na2 molecule [panel (b) of Fig. 1]. Starting the scGW
calculation from the LDAwave functions leads to a slowly
converging result: after a dozen iterations with the extra
electron spread over the two molecules, the HOMO wave
function finally turns into the HF one. Whatever the start-
ing point, the GW calculation ends up in the same sta-
tionary point, localizing the electron on one single Na2
molecule. As a consequence, the GW approach yields a
concave total energy and suffers from a localization error.

In the following, we quantify the nonlinearity of the
scGW approximation with calculations for small sodium

clusters according to our route (ii): we compare the con-
sistency of ionizations and affinities. The sodium clusters
are a system of choice for such a study, since accurate
experiments [13] and configuration-interaction calcula-
tions [14] are available. Furthermore, these systems are
practical enough so that we still can use a plane-wave code,
which is customary in the GW framework. We performed
�-point calculations in large face-centered cubic supercells
with a 60 Bohr cubic edge length. We use a plane-wave
cutoff of 14 Ha for wave functions and of 2 Ha for
dielectric matrices. We use a norm-conserving pseudo-
potential, where the semicore states (2s22p6) of sodium
are treated as valence. These states are indeed very impor-
tant for the exchange operator and are noticeably polar-
izable. We employ a plasmon-pole approximation, and we
have verified that this is not an issue. The number of states
is 512, which is reasonably low thanks to the acceleration
scheme of Ref. [15]. The Coulomb interaction has been cut
off in order to remove spurious image interactions [16,17].
As the geometries are not the issue here, we performed all
the calculations in the neutral configurations obtained from
a reference quantum chemistry work [14].
Some care is required due to the periodic approach.

Periodic charged systems in presence a neutralizing back-
ground slowly converge [18]. However, the eigenvalues of
neutral molecule experience also slow convergence in the
supercell approach. The eigenvalues are shifted with re-
spect to an isolated system calculation since the potential
does not vanish at infinity in the periodic calculation. The

FIG. 1 (color online). Isosurface of an extra electron added in
the system of two distant Na2 molecules, or in other words,
isosurface of the highest occupied molecular orbital of the
ð2Na2Þ� system. Panel (a) represents the LDA results, whereas
panel (b) provides the scGW result.
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difference between a finite system calculation within
Gaussian formalism using a 6�311þþG�� basis and our
periodic supercell approach appears to be a mere shift of
the eigenvalues, whatever the charge, we simulate. Both
neutral and charged systems can be corrected by shifting
the supercell eigenvalues onto the isolated ones within
LDA, for instance. Using the same shift, we were able to
superimpose the HF eigenvalues from the periodic calcu-
lations onto the isolated results with a 0.1 eV accuracy. In
the following, this shifting procedure is systematically
applied. Note that we do not present results for the affinity
of the clusters, as they show strong dependence with
respect to the supercell size.

Table I compares the ionization energy of small sodium
clusters, as obtained from removing an electron from Nan
or from adding an electron to Naþn , within LDA, HF,
B3LYP, G0W0, and scGW. For all the approximations
considered here, there is no discontinuity in the
exchange-correlation functional so that the ionizations
and affinities reduce to the HOMO and LUMO eigenval-
ues. Within LDA, the LUMO energy for the positively
charged clusters is much lower than the HOMO energy
of the neutral ones. LDA (and GGA, not presented here) is
a convex approximation, which is consistent with the band
gap underestimation problem [4]. HF gives the exact an-
swer for a one electron system, since it is devoid of any
self-interaction. The sodium atom, which has a single 3s
valence electron, is well described within HF. The agree-
ment between ionization and affinities then deteriorates up
to �0:8 eV for the largest clusters. The HF approximation
is clearly concave, which is consistent with the observed
band gap overestimation. The hybrid functional family that
mixes LDA, GGA, and exact-exchange could be a potential
answer. The B3LYP functional [19] that includes 20% of
exact-exchange is still convex: B3LYP predicts systemati-
cally the LUMO energies of the Naþn clusters much lower
than the HOMO of the Nan.

Turning to GW calculations, we first provide for com-
pleteness the standard G0W0 results. Our results agree well
with the published data for neutral species from Ref. [20].
Though reasonable compared to experiment, the G0W0

data are difficult to interpret and do not show clear trends.
This is mainly due to the inadequacy of the perturbative
approach in the case of the unoccupied states in a finite

system. The scGW approach, which recalculates the wave
functions, provides the most sensible results. The LUMO
of Naþn is systematically slightly higher than the HOMO of
Nan, but the difference is always lower than 0.45 eV. This
shows a small, but noticeable, localization error in agree-
ment with the result from route (i).
Because of the inconsistency between the eigenvalues,

the ionizations and affinities are generally obtained from
either total energy differences, the �SCF method, or from
Slater’s transition state theory [21]. Both approaches gen-
erally agree very well. The �SCF results provided in
Table I for LDA, HF, and B3LYP supersede the eigenvalue
estimate within the corresponding approximations.
Following the argument of Slater, if the total energy within
our approximation is not linear for fractional number of
electrons as it should be, we may expand it as a second
order polynomial. Under this assumption, the ionization
energy can be approximated by the eigenvalue at the half
charge N � 1=2. The Slater’s transition state approach
gives a very good estimate for the total energy difference.
Following the same arguments, we observe that the total
energy difference can be also evaluated as the mean value,

IðNÞ � � 1

2

�
@E0

@n

��������n¼ðN�1Þþ
þ@E0

@n

��������n¼N�

�
: (3)

The evaluation of Eq. (3) does not require total energy nor
fractional charge calculations, but only the derivatives with
respect to the particle number, which reduce in most cases
to the eigenvalues of the neutral and the charged system. It
can be readily evaluated from the data provided in Table I.
The final result, labeled �SCF within scGW approxima-
tion, gives the best estimate of all approximations for the
ionization energy of the sodium clusters. Furthermore, this
�SCF procedure allows for a reconciliation between total
energy and eigenvalue approaches. A direct evaluation
(beyond reach by now) of the scGW total energy differ-
ences would be consistent with the proposed procedure.
As a final illustration of the inconsistency between

eigenvalues between charged systems, we consider the
localized state in the band gap of crystal created by a point
defect. We exemplify with the carbon split h100i interstitial
in cubic silicon carbide [22]. The calculations have been
performed in a 65 atom cubic supercell with a 2� 2� 2 k
point sampling. The structure of the defect (inset of Fig. 2)

TABLE I. Ionization energy in eV of the small sodium clusters evaluated from the HOMO of the neutral species �Ið0Þ, from the
LUMO of the cationic species �AðþÞ, or from the difference in total energies (�SCF), within different approximations to the
exchange correlation: LDA, HF, B3LYP, G0W0, and scGW.

LDA HF B3LYP G0W0 scGW Expt. [13]

�AðþÞ �Ið0Þ �SCF �AðþÞ �Ið0Þ �SCF �AðþÞ �Ið0Þ �SCF �AðþÞ �Ið0Þ �AðþÞ �Ið0Þ �SCF

Na1 �6:96 �3:08 �5:36 �4:94 �4:95 �4:94 �7:10 �3:48 �5:42 �4:88 �5:40 �5:05 �5:49 �5:27 �5:139
Na2 �7:12 �3:20 �5:25 �3:90 �4:48 �4:08 �6:78 �3:52 �5:19 �5:10 �5:05 �4:66 �5:10 �4:88 �4:934
Na3 �5:99 �2:62 �4:30 �3:47 �4:17 �3:80 �5:59 �2:91 �4:24 �4:42 �4:24 �4:15 �4:42 �4:29 �3:97
Na4 �6:01 �2:77 �4:38 �3:00 �3:78 �3:34 �5:55 �2:98 �4:25 �4:71 �4:29 �4:18 �4:38 �4:28 �4:27
Na5 �5:77 �2:78 �4:27 �3:34 �4:43 �3:94 �5:32 �3:03 �4:17 �4:54 �4:17 �4:18 �4:39 �4:28 �4:05
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has been frozen in the neutral optimized configuration in
order to isolate the purely electronic behavior we want to
address. We performed LDA and G0W0 evaluation of the
position of the defect level inside the band gap for different
charged supercells (charges 0, þ and þþ). In this case,
scGW is not required since we have verified that the LDA
wave functions constitute a good approximation for the
scGW wave functions. Comparing the density of states, we
carefully checked that the very tiny band shifts were not an
issue. The trends are consistent with the sodium clusters.
The eigenvalues of the levels within LDA deviate strongly
when changing their occupation, showing a strong convex
behavior (the HOMO of the neutral system is higher than
the LUMO of the positive system). As seen from Fig. 2, the
discrepancy between ionizations and affinities is small
within G0W0 (�0:2–0:3 eV) and confirms the slight local-
ization error. For the defect calculations, we again propose
the �SCF procedure within GW, which simulates total
energy differences without the need to perform such cal-
culations. The final �SCF value for the charge transitions
are �GWðþ=0Þ ¼ 1:39 eV and �GWðþþ=þÞ ¼ 0:53 eV.

In conclusion, we proposed to judge the quality of the
exchange-correlation approximations on the discrepancy
between ionization of the neutral system and affinity of the
positively charged one. The exact exchange-correlation
functional should not have any. From all the approxima-
tions tested here (LDA, HF, B3LYP, GW), the GW ap-
proach offers the lowest discrepancy. The small remaining
error within GW is consistent with a systematic localiza-
tion error and the slight band gap overestimation observed
in practice [11,23]. In order to provide the most meaningful

results, we support the use of a �SCF-like procedure to
conciliate total energy and quasiparticle energy evaluations
of the ionization and affinity energies. Finally, the ioniza-
tion or affinity consistency can give insights concerning the
properties of the vertex function that should fix the GW
errors.
The present calculations were performed using the

ABINIT code [24] and GAUSSIAN03 [25]. We are grateful

to Silvana Botti for her helpful comments. This work was
performed using HPC resources from GENCI-CINES
(Grant No. 2009-GEN6018).
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FIG. 2 (color online). Vertical charge transition levels of the
carbon split h100i interstitial of 3C-SiC, evaluated within G0W0

using different charges for the 65 atom supercell. The occupied
levels are plain lines, whereas the empty ones are dashed. The
structure of the defect has been kept frozen in the neutral
geometry, as shown in the inset in the upper left corner. The
energy of the defect levels is referred to the top valence band.

PRL 103, 176403 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

23 OCTOBER 2009

176403-4

155



THE JOURNAL OF CHEMICAL PHYSICS 136, 194107 (2012)

Ionization energy of atoms obtained from GW self-energy or from random
phase approximation total energies

Fabien Bruneval
CEA, DEN, Service de Recherches de Métallurgie Physique, F-91191 Gif-sur-Yvette, France

(Received 1 March 2012; accepted 1 May 2012; published online 17 May 2012)

A systematic evaluation of the ionization energy within the GW approximation is carried out for
the first row atoms, from H to Ar. We describe a Gaussian basis implementation of the GW ap-
proximation, which does not resort to any further technical approximation, besides the choice of the
basis set for the electronic wavefunctions. Different approaches to the GW approximation have been
implemented and tested, for example, the standard perturbative approach based on a prior mean-
field calculation (Hartree-Fock GW@HF or density-functional theory GW@DFT) or the recently
developed quasiparticle self-consistent method (QSGW). The highest occupied molecular orbital en-
ergies of atoms obtained from both GW@HF and QSGW are in excellent agreement with the exper-
imental ionization energy. The lowest unoccupied molecular orbital energies of the singly charged
cation yield a noticeably worse estimate of the ionization energy. The best agreement with respect
to experiment is obtained from the total energy differences within the random phase approximation
functional, which is the total energy corresponding to the GW self-energy. We conclude with a dis-
cussion about the slight concave behavior upon number electron change of the GW approximation
and its consequences upon the quality of the orbital energies. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4718428]

I. INTRODUCTION

The Green’s function approach to many-body prob-
lem has been extremely successful for the electronic struc-
ture in condensed matter physics. Most noticeably, the GW
approximation1 is known to outperform the local and semi-
local approximations of density functional theory (DFT) for
the description of band gaps and band structures.2–4 For atoms
and molecules, the performance of the GW approximation has
been studied very little. The seminal results of Shirley and
Martin5 were rather promising, but have had follow-ups only
recently.6–10 However, no systematic study is available yet.
Especially the GW calculations for open-shell and spin polar-
ized atoms do not exist to the best of our knowledge.

There is no stringent need for accurate orbital energies
for atoms, since the ionization energy I for instance can be
obtained thanks to a total energy difference

I = EN−1
0 − EN

0 , (1)

where EN
0 stands for the total energy for the N electron sys-

tem. This is the so-called �SCF procedure that produces in
general good quality ionization energies at the expense of two
separate self-consistent calculations.

In DFT or in many-body perturbation theory, the ion-
ization energy can also be evaluated from the eigenvalues.
Within DFT, they are named Kohn-Sham eigenvalues,
whereas within many-body perturbation theory, they are
called quasiparticle energies. Hence, the ionization energy
could alternatively be obtained from the Kohn-Sham or
quasiparticle energy corresponding to the highest occupied
molecular orbital (HOMO) εN

HOMO or from the Kohn-Sham or
quasiparticle energy corresponding to the lowest unoccupied

molecular orbital (LUMO) energy of the N−1 electron
system εN−1

LUMO,

I = −εN
HOMO = −εN−1

LUMO. (2)

Generally speaking, the calculation of the ionization energy
through the orbital energies yields rather poor results. This
problem is not much acute for atoms, as the �SCF technique
can be used. Nevertheless, it has been understood recently
that the poor quality of the potentials (or orbital energies) has
also deep consequences on the total energies.11 The orbital
energies are related to the fractional electron behavior, which
in turn is related to a localization or delocalization of the
wavefunctions. There is therefore a strong need to investigate
higher levels of approximation for the potentials.

The GW approximation is a successful approximation
for self-energies, which, with the Hartree potential, is the
effective one-electron potential of a many-electron system.
Unfortunately, the GW implementation is not unique in
practice. Owing to the complexity of the calculations, several
types of GW calculations have been designed in the last 50
years. The standard approach is not self-consistent and makes
use of a prior mean-field calculation as a starting point: this
is the so-called G0W0 procedure. This situation introduces a
dependence of the GW result onto the underlying mean-field
choice. For solids, the chosen mean-field is very often
the local density approximation (LDA) or the generalized
gradient approximation (GGA). For atoms and molecules,
the starting mean-field happens to be Hartree-Fock (HF) or
any other approximation of DFT. The choice of the starting
point is unfortunately crucial, since the final GW result can
be affected by deficiencies in the starting point.12–15

0021-9606/2012/136(19)/194107/10/$30.00 © 2012 American Institute of Physics136, 194107-1
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In order to get rid of the starting point dependence,
self-consistent GW would appear appealing at first sight.
However, according to the few studies available, the perfor-
mance of such an approach for the quasiparticle energies is
unclear.7, 8, 10, 16–18 For spectral properties, such as ionization
energy, the full self-consistency has been shown to yield in-
correct results for the homogeneous electron gas.16 As far as
finite systems are considered, the comprehensive study of 30
molecules by Rostgaard and co-workers8 shows little or no
improvement due to the fully self-consistent GW approach.
Approximate static self-consistent schemes are then an inter-
esting option;19, 20 they allow one to completely forget about
the starting point and they are not affected by the dynami-
cal caveats of the full self-consistency. The quasiparticle self-
consistent GW (QSGW) approach of Faleev and co-workers19

has been extremely successful for band gaps of solids.21, 22

Besides one single study on molecules,10 its performance for
atoms is however still to be determined.

The purpose of the paper is to evaluate the performance
of the GW approximation for the ionization energy of the first
row atoms. In order to calculate unambiguously converged
results, we first present a novel implementation of the GW
approximation for atoms that are free of the usual drawbacks
of standard implementations. Our implementation uses
Gaussian basis and does not rely on any further approx-
imation besides the initial choice of the basis set for the
wavefunctions. Second, we assess the so far unknown
performance of QSGW approach for atoms and conclude it
yields a small but noticeable improvement over GW@HF.
Third, we compare three different methods to evaluate the
ionization energy of atoms within GW: HOMO energy of
the atom −εN

HOMO, LUMO energy of the cation −εN−1
LUMO, or

total energy difference of the atom and the cation (�SCF
procedure). The most accurate results for the ionization
energy are obtained from �SCF and from the HOMO energy.
The LUMO energies of the cations yield noticeably worse
estimates. We conclude our study with a discussion about
the slightly concave upon electron number changes behavior
of the GW approximation that rationalizes the discrepancy
between the three different paths towards the ionization
energy.

II. A SHORT REVIEW OF THE GW APPROXIMATION

A. General theory

The GW self-energy arises from the many-body perturba-
tion theory, when the considered perturbation is not in the bare
Coulomb interaction v(r, r′) = 1/|r − r′| (in atomic units),
but is in the screened Coulomb interaction W . The effec-
tive interaction W accounts for the screening of the interac-
tions by the electrons of the system. W is anticipated to be
smaller and better behaved than v. Most importantly, the long-
ranged part is damped out for metallic systems or reduced
for the other systems. The GW self-energy may be thought
of as a dynamically screened generalization of the Fock
exchange.

In practice, the GW self-energy is built from the fre-
quency convolution of the Green’s function G with the

screened Coulomb interaction W ,

�GW (r, r′, ω) = i

2π

∫
dω′eiηω′

G(r, r′, ω + ω′)

×W (r′, r, ω′), (3)

where η is a vanishing positive real number.
Introducing the polarizable part of the screened Coulomb

interaction Wp = W − v, the self-energy can be conveniently
split in the usual Fock exchange operator

�x(r, r′) = i

2π
v(r, r′)

∫
dω′eiηω′

G(r, r′, ω′) (4)

and a remainder �GW
c . By definition, the remainder accounts

for the correlation effects. The term eiηω′
in Eq. (4) retains

only the contribution from the occupied states in the Green’s
function.

The polarizable part of the screened Coulomb interaction
Wp is in turn a function of the random phase approximation
(RPA) polarizability χ of the electronic system,

Wp(r, r′, ω) =
∫

dr1dr2v(r, r1)χ (r1, r2, ω)v(r2, r′). (5)

Then the RPA polarizability χ can be related to the in-
dependent particle polarizability χ0 through a Dyson-like
equation,

χ−1(r, r′, ω) = χ−1
0 (r, r′, ω) − v(r, r′) (6)

that connects the non-interacting system to the interacting
system. Finally, χ0 has a simple expression in terms of two
Green’s functions,

χ0(r, r′, ω) = −i

∫
dω′G(r, r′, ω + ω′)G(r′, r, ω′). (7)

Using the diagrammatic language, χ0 is a ring diagram
and the RPA polarizability χ is the infinite sum over the ring
diagrams. Symbolically, it reads

χ = χ0 + χ0vχ0 + χ0vχ0vχ0 + ... . (8)

The GW diagrams for the correlation self-energy are dis-
played in panel (b) of Fig. 1. It contains an infinite summation
over all the ring diagrams. The second-order approximation
(or MP2 when the Green’s functions are HF ones23), on the
other hand, not only contains the first of the ring diagrams, but
also includes the second-order exchange diagram (panel (a)).

B. The perturbative GW approach

In principle, the Green’s function appearing in
Eqs. (3) and (7) should be obtained self-consistently from
the iteration of the Dyson equation. In reality, this is hardly
feasible and may be not desirable7, 8, 16–18 as discussed in the
Introduction. It is then common practice1–3 to consider the
Green’s function from another simpler approximation: LDA,
GGA, HF, etc. We denote these approaches as GW@LDA,
GW@GGA, GW@HF, respectively.
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FIG. 1. Correlation self-energy diagrams included in the second-order ap-
proximation [panel (a)] and in the GW approximation [panel (b)]. The solid
lines with arrows represent the one-particle Green’s function G and the
dashed lines represent the Coulomb interaction v. The second-order self-
energy consists of the one-ring diagram and of the second-order exchange,
whereas the GW self-energy contains the infinite sum over the ring diagrams.
If the Green’s functions are HF Green’s functions, the second-order self-
energy is named MP2.

Within a mean-field approach with eigenvalues εiσ and
eigenvectors ϕiσ (r), the Green’s function simply reads

G(r, r′, ω) =
∑
iσ

ϕiσ (r)ϕiσ (r′)

×
[

fiσ

ω − εiσ − iη
+ 1 − fiσ

ω − εiσ + iη

]
, (9)

where the wavefunctions have been assumed to be real and fiσ
is the occupation number of state i with spin σ . The Green’s
function depends on all the orbitals: occupied and virtual. Its
poles are the eigenvalues, slightly shifted above or below the
real axis.

With this definition for the Green’s function, the equa-
tions presented in Sec. II A can be tracted numerically and
finally, the GW quasiparticle energy reads

εGW
iσ = εHF

iσ + 〈
iσ |�GW

c (εGW
iσ )|iσ 〉

. (10)

Please note that the self-energy is a dynamical operator and
needs to be evaluated precisely at the unknown quasiparticle
energy. This is not an issue since the equation can be solved
for instance graphically as exemplified in Fig. 2.

C. Quasiparticle self-consistent GW

The dependence of the GW result onto the starting mean-
field Green’s function is not elegant in theory and can intro-
duce additional issues in practice. It would be desirable to
perform the calculations self-consistently, so that the starting
point is forgotten.

Recently, the quasiparticle self-consistent GW (QSGW)
was introduced by Faleev and co-workers19 in order to get
a simplified version of self-consistent GW calculations. They
proposed a static and hermitian approximation to the GW self-
energy, 〈

iσ |�QSGW
c |jσ

〉 = 1

2

[〈
iσ |�GW

c (εjσ )|jσ
〉

+ 〈
jσ |�GW

c (εiσ )|iσ 〉]
(11)

that conserves the orthogonality of the underlying wavefunc-
tions and the real-valued eigenvalues. The advantage of this
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FIG. 2. HOMO (upper panel) and LUMO (lower panel) expectation values
of the correlation part of the dynamical GW self-energy based on HF inputs
(GW@HF) for He using a cc-pV5Z basis. The small real number η has been
set to 0.25 eV. The crossing point between the straight line and the self-energy
is the solution of the quasiparticle equation (10).

particular expression is that only the off-diagonal terms (i �=
j) are approximated. Once self-consistency has been reached,
the diagonal expectation values of �c are evaluated precisely
at the quasiparticle energy, as they should be according to
Eq. (10).

D. RPA total energy

Finally, we close the theoretical review by introducing
the RPA expression for the total energy. This approximation
is tightly bound the GW self-energy: the GW self-energy op-
erator is obtained from the functional derivative of the RPA
functional �RPA

c with respect to the Green’s function,24

�GW
c (r, r′, ω) = δ�RPA

c

δG(r′, r,−ω)
, (12)

where the RPA functional symbolically reads

�RPA
c = −1

2
Tr

[+∞∑
n=2

(vχ0)n

n

]
. (13)

The symbol Tr is short for the triple integral over r, r′, and ω.
More details can be found for instance in Ref. 25. The RPA
functional is the infinite sum over the ring diagrams. In sum-
mary, the functional �RPA

c yields the correlation energy cor-
responding to the GW approximation to the self-energy. The
connection between the two frameworks will be numerically
investigated in the following.

III. PRACTICAL IMPLEMENTATION

The main target of the present work is to obtain unam-
biguous values. Therefore, we resort to as few approximations
as possible. Basically, all the calculations are exact, once the
basis for the wavefunctions has been set. The computational
efficiency is clearly not the issue here.
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We adopt an all-electron formalism to solve the non-
relativistic Schrödinger equation. The self-consistent field
equations are solved in the unrestricted manner, for which, the
spin-up and spin-down wavefunctions are allowed to differ.
The wavefunctions are expanded in a Gaussian basis. Unlike
previous implementations in a Gaussian basis,6, 9 we do not
resort to any auxiliary basis set to expand the polarizabilities.
Furthermore, the RPA polarizability is obtained in the prod-
uct basis set |ijσ 〉, so that its frequency dependence is exactly
known and can be integrated analytically.26 As a consequence,
no plasmon-pole model,3, 27 nor analytic continuation10, 28 is
needed. In summary, once the basis set has been chosen, there
is no other convergence parameter of any kind.

A. The Gaussian basis set

For convenience, we adopt the Cartesian Gaussian basis
functions

φα(r) = Nxnx yny znze−ζ r2
, (14)

where ζ is the decay rate, l = nx + ny + nz defines the an-
gular momentum of the Gaussian basis function, and N is
the normalization factor. The decay rates are obtained from
the Dünning’s correlation consistent sets29 as reported in a
web-available database.30, 31 Even though the original basis
sets from Dünning were defined for pure Gaussian functions
with spherical harmonics describing the angular part, the use
of Cartesian Gaussian just adds a few basis functions and af-
fects the final result very little. For instance, with Cartesian
Gaussians, there are six d orbitals instead of the usual five;
there are 10 f orbitals instead of the usual seven; etc. The use
of the Dünning sets cc-pVXZ (with X = D, T, Q, 5, or 6)
allows us to reduce the basis set error in a systematic manner.

The overlap, the kinetic, the nucleus attraction integrals
are readily obtained from basic formulas. The numerical value
of the four Gaussian electron repulsion integrals

(αβ|γ δ) =
∫

dr1dr2φα(r1)φβ(r1)
1

|r1 − r2|φγ (r2)φδ(r2)

(15)
can be obtained from a web-available library.32

The most cumbersome part of a GW calculation is the
transformation of the electron repulsion integrals into the
eigenvector basis,

(ijσ |klσ ′) =
∑
αβγ δ

Cαiσ CβjσCγkσ ′Cδlσ ′(αβ|γ δ), (16)

where Cαiσ are the expansion coefficients of the eigenvectors
into the Gaussian basis set. This operation scales as N5 with
N being the number basis functions. The same bottleneck is
also encountered in MP2 calculations.

B. RPA equation in the product basis

Once these electron repulsion integrals are available, we
are able to evaluate the GW approximation for atoms. We
first solve the RPA equation in the product basis set |abσ 〉,
where a and b are indexes over the mean-field eigenstates.
This equation requires the diagonalization of the RPA two-

particle Hamiltonian HRPA,

H cdσ ′
RPA abσ = (εbσ − εaσ )δacδbdδσσ ′

+ (faσ − fbσ )(abσ |cdσ ′). (17)

The product basis is limited to occupied-virtual or virtual-
occupied pairs. This operation is then a matrix diagonaliza-
tion of dimension 2NoccupiedNvirtualNspin. The diagonalization
problem is non-symmetric. Let us consider the matrix R con-
taining the right-eigenvectors,

HRPAR = RD. (18)

The matrix D stands for the diagonal matrix containing the
eigenvalues Eλ. The eigenvalues Eλ represents the neutral ex-
citations with positive energy (resonant part of the spectrum)
and negative energy (antiresonant part of the spectrum). The
right eigenvectors Rλ are then expanded in the product basis
|abσ 〉. The problem could be recast in a symmetric manner
using the so-called Casida equations.33

Using the eigenvectors and eigenvalues of the RPA
Hamiltonian, the polarizability χ can be written in the product
basis,

χcdσ
abσ (ω) =

∑
λ

Rλabσ (R̃−1)λcdσ

×
[

�(Eλ)

ω − Eλ + iη
+ �(−Eλ)

ω − Eλ − iη

]
, (19)

where the index λ runs over the solutions of the RPA equa-
tion and R̃−1 is a short notation for the matrix inverse of R the
columns of which were multiplied by the occupation number
difference. The Heavyside function �(Eλ) ensures the correct
polar structure for a time-ordered response function: the neg-
ative energies Eλ are located just above the real axis of the
complex plane and the positive energies just below.

C. GW self-energy with exact frequency dependence

Hence, introducing the Green’s function from Eq. (9)
and Wp = vχv from Eq. (19) into the correlation self-energy
�GW

c , the residue theorem allows one to perform exactly the
frequency integral. The final expression for GW self-energy
reads〈

iσ |�GW
c (ω)|jσ

〉 =
∑
kλ

Mλikσ M̃λkjσ

[
fkσ�(Eλ)

ω − εkσ + Eλ − iη

− (1 − fkσ )�(−Eλ)

ω − εkσ + Eλ + iη

]
, (20)

where the intermediate matrix products

Mλikσ =
∑
ab

Rλabσ (ikσ |abσ ) (21)

and

M̃λkjσ =
∑
cd

(R̃−1)λcdσ (cdσ |kjσ ) (22)

have been introduced. Note that the GW self-energy is diago-
nal in spin.

The polar structure of �c can be observed in Fig. 2. The
poles are located εkσ + Eλ. The self-energy is very weakly
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FIG. 3. Basis set convergence of the ionization energy of helium (upper panels) and neon (lower panels). The ionization energy is obtained from the HOMO
energy of the atom within GW@HF in the left-hand panels. The horizontal arrows show the HOMO energy from literature’s calculations in Ref. 6 (dashed
arrow), in Ref. 7 (thick arrow), and in Ref. 10 (thin arrow). The horizontal doted line shows the complete-basis set limit using a simple extrapolation scheme.35

The right-hand panels compare the convergence rates of the HOMO energy within GW@HF (circles) to the �SCF procedure using RPA@HF (squares) or using
MP2 (diamonds).

frequency-dependent in the range of interest, i.e., in the re-
gion where the two curves intersect. In other words, the renor-
malization factor of the quasiparticle peaks is close to 1.
The closest poles are approximately at HOMO energy minus
the HOMO-LUMO gap and at the LUMO energy plus the
HOMO-LUMO gap.

The implementation of QSGW is then straightforward.
The full matrix 〈iσ |�QSGW

c |jσ 〉 is calculated and then trans-
formed back into the basis representation 〈α|�QSGW

c |β〉 for
spin up and spin down. The only additional difficulty arises
from the self-consistency loop stabilization. We employ here
a simple mixing scheme. We mix not only the density matrix,
as it is customary for HF calculations, but also the self-energy
matrix itself, since the self-energy depends directly onto the
energies and the wavefunctions. With a mixing parameter of
0.5, we were able to achieve good convergence even with the
largest basis sets of the present work using a maximum of 60
cycles.

D. RPA correlation energy

The RPA correlation energy is obtained as a by-product
of the calculation of the polarizability χ . Indeed, Furche
showed34 that the RPA correlation energy can be obtained
from the formula,

ERPA
c = 1

2

∑
λ

Eλ>0

(
Eλ − ET DA

λ

)
, (23)

where the sum has been limited to positive excitation ener-
gies and the excitation energies ET DA

λ are obtained within the
Tamm-Dancoff approximation that ignores the coupling be-
tween occupied to virtual excitations and virtual to occupied
excitations. In practice, we perform a self-consistent HF (resp.
QSGW) calculation and calculate the RPA correlation energy
out of the HF (resp. QSGW) eigenvectors and eigenvalues. We
label this procedure RPA@HF (resp. RPA@QSGW).

IV. CONVERGENCE AND ACCURACY

Before starting the systematic calculations, let us first
check the reliability of the method. We first test the basis set
convergence for some selected elements and then check our
results against the very few published data for the first row
atoms.

The basis set convergence is shown in Fig. 3 for the ion-
ization energy of He and Ne. We observe the slow conver-
gence of the GW@HF HOMO energy as a function of the
basis set size. For Ne, an accuracy of 0.1 eV is obtained at
the expense of a cc-pV5Z basis, which corresponds to 126
Cartesian Gaussian functions and a maximum angular mo-
mentum of l = 5. The rate of convergence is somewhat slower
than reported for molecules in the previous Gaussian GW
implementations.6, 9, 10, 36 However, it seems to be consistent
with the convergence rate of RPA energies. RPA energies have
been observed to require extremely complete basis sets in or-
der to achieve chemical accuracy.37 Figure 3 also shows the
convergence rate of the ionization energy using the difference
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TABLE I. Review of the previously published GW ionization energies and electron affinities of the first row atoms, and comparison with our results within the
cc-pV5Z basis.

HF+GW LDA+GW QSGW

This work Earlier studies This work Earlier studies This work Earlier studies Expt.a

Ionizations
H − 12.85 −12.66b − 13.61
He − 24.72 −24.68,c −24.73,d −24.75e − 23.92 −23.65,e −24.20f − 24.59
Be − 9.16 −9.17,d −9.19e − 9.02 −8.88,e −9.24f − 9.32
B+ − 24.88 −24.9g − 24.15
Ne − 21.79 −21.47,c −21.91e − 20.97 −21.06,e −20.55f − 21.56
Na − 5.32 −5.40h −5.43 −5.49h − 5.15
Mg − 7.62 −7.69e − 7.53 −7.52e − 7.65
Al+ − 18.76 −18.9g − 18.83
Ar − 16.07 −15.94c − 15.76

Electron affinities
B+ − 8.46 −8.5g − 8.30
Na+ − 4.71 −4.88h −5.06 −5.05h − 5.15
Al+ − 6.01 −6.0g − 5.99

aReference 39.
bReference 40.
cReference 6.
dReference 10.
eReference 7.
fReference 41.
gReference 5.
hReference 42.

of RPA total energies of the atom and of the positive ion. The
convergence rate of the �SCF procedure nicely follows the
convergence of the GW HOMO energy. Such a slow conver-
gence is not surprising for perturbation theory. The MP2 cal-
culations also shown in Fig. 3 are known to slowly converge
to the complete basis set limit.35, 38

From now on, all the calculations will be performed using
the Dunning’s cc-pV5Z basis set. This kind of basis appears
as sufficient to ensure a 0.1 eV accuracy. The number of basis
functions ranges from 70 for hydrogen to 130 for argon.

Table I compares our evaluation of GW@LDA, at
GW@HF, and QSGW ionization energies and electron affini-
ties with all the available results in the literature we are
aware of. Results published to date use different basis sets:
Gaussian basis sets for Refs. 6 and 10, numerical radial grid
for Refs. 5, 7, 40, and 41 and plane-waves for Ref. 42. The
overall agreement of our values with the published values is
rather good, especially for GW@HF. The somewhat larger
discrepancies for GW@LDA may possibly be attributed to
the generalized Koopmans’ theorem employed in Ref. 7. Note
that agreement with the oldest results of Shirley and Martin is
good.5 The most similar implementation to ours10 yields im-
pressively similar results (within 0.01 eV). The only QSGW
result for an atom from the literature also agrees well with our
implementation.42

In Secs. V A–V C, we provide accurate evaluation of the
ionization energy for all the first row atoms. These atoms in-
clude open-shell atoms, which are delicate to treat in a mean-
field approach. Some approximations, such as local and semi-
local approximations of DFT, minimize the total energy with
fractional occupation numbers. Other approximations, such

as HF and QSGW, do favor integral occupation numbers. In
the present study, only approximations of the latter kind have
been considered for the open-shell atoms and therefore, the
occupation numbers have been safely set to integers.

V. IONIZATION OF ATOMS

A. Magnitude of the screening for atoms

Here, we evaluate the importance of the screening of the
interactions for atoms. The perturbation theory in solids is of-
ten based on the screened Coulomb interaction W , whereas
for atoms, it is rather based on the bare Coulomb interac-
tion v. The rational behind this choice is the weak screening
attributed to atoms. Indeed, the electrons in isolated atoms
are localized and weakly polarizable. Therefore, it would be
pointless using the complex W instead of the simple v for
atoms. This explains why the GW approximation is prominent
for the condensed matter, whereas the Møller-Plesset approx-
imations are in use for gas phase calculations.

We would like to check explicitly the influence of using
v or W for atoms. The comparison is exemplified with the
HOMO expectation value for different approximations to the
correlation self-energy �c. The complete GW self-energy is
compared to the first term in the ring diagram expansion (see
Fig. 1). The one-ring self-energy is contained both in the MP2
approach and in the GW approach. The self-energy truncated
to one-ring only is easily derived from Eq. (5), where χ is
replaced by χ0.

Figure 4 demonstrates that the difference between the
infinite sum of ring diagrams and the truncation to the first
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FIG. 4. HOMO expectation value of the correlation self-energy for the one-
ring self-energy (squares) and for the GW self-energy (open triangles) for the
light atoms. The calculations are based on HF inputs in a cc-pV5Z basis set.

diagram is sizable. As expected, the GW self-energy is in
general smaller than the one-ring counterpart. The statement
is clear for the first row atoms and more contrasted for the
second row. The closed-shell atoms (He, Be, Ne, Mg, Ne)
are especially sensitive to the truncation of the sum over
ring diagrams. We conclude that W is a better choice for a
perturbation expansion, even for the light atoms.

B. HOMO of atoms and LUMO of cations

As explained in the introduction, there are several ways
to evaluate the ionization energy of an atom. Most commonly,
the total energy difference in the atom and the singly posi-
tively charged ion is taken. Alternative choices are the atom
HOMO energy or the cation LUMO energy [Eq. (2)]. Within
an exact theory, these three quantities are identical. Within
DFT or HF, these three evaluations strongly deviate. There
are some early indications GW should be much better.42 We
now consider these alternative forms for HF and two kinds of
GW: GW@HF and QSGW.

Figure 5 shows the error with respect to experimental
negative ionization energy: εN

HOMO − (−I ). It is well known
that the HF HOMO energy is not catastrophic in predicting the
ionization energy. As might be expected because screening
is weak, GW@HF and QSGW are quite similar. All the GW
based approaches underestimate the position of the HOMO
by a small amount. The perturbative GW approach seems to
be justified for atoms: even when the HF starting point is no-
ticeably wrong (e.g., for atoms of the end of the first row), the
GW@HF performs almost as well as QSGW. Note that the
GW correlation contains a small self-interaction: the HOMO
of the hydrogen atom is not exact.

In Fig. 6, we provide the error with respect to experi-
ment for the LUMO energy of singly positively charged ions
within same three approximations. It is well known from text
books that the LUMO in HF gives a very poor estimate to the
ionization energy. We calculated a huge mean-absolute error
(MAE) of 1.74 eV. The different GW flavors, GW@HF and
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FIG. 5. Deviation from experiment39 in the HOMO energy εN
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of the light atoms within cc-pV5Z basis set for HF (open bars), GW@HF
(striped bars), or QSGW (solid bars). The mean-absolute error (MAE) is also
provided.

QSGW, once again perform rather well in predicting the cor-
rect position of the cation LUMO energy. The MAE error is
twice larger than for the positioning of the HOMO of atoms.
Generally speaking, the self-consistency improves over the
perturbative GW@HF for cations, except for carbon and sil-
icon. When the HF starting point is completely off, the self-
consistency can help much sometimes, as can be observed for
the atoms of the end of the first row series and sometimes does
not do much, as for the end of the second row series. In gen-
eral, the GW based methods slightly overestimate the position
of the LUMO of singly positively charged ions.

In order to reach the best agreement with experiment, it
appears safer so far to evaluate the ionization energy with the
GW approximation from the HOMO of the atom rather than
from the LUMO of cations.
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FIG. 6. Deviation from experiment39 in the LUMO energy εN−1
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bars), GW@HF (striped bars), or QSGW (solid bars). The mean-absolute er-
ror (MAE) is also provided.
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C. �SCF evaluation of the ionization energy

We now turn to the classical method to evaluate the
ionization energy of atoms, namely the �SCF procedure.
Figure 7 shows the error in calculating the ionization energy
from the total energy difference described in Eq. (1). The
RPA expression for the correlation energy corresponds to
the GW approximation for the correlation self-energy. RPA
energy and GW self-energy are, in principle, closely related.
We hence employed four different approximations for the
total energies: HF, RPA based on HF inputs, RPA based on
QSGW inputs, and the standard MP2 approximation. For
the �SCF procedure, MP2 clearly prevails over the other
approximations. The second-order exchange diagram, as
drawn in Fig. 1, which is present in MP2 and absent in RPA,
is undoubtedly important for atoms. Thanks to this diagram,
MP2 is devoid of self-interaction, whereas RPA suffers from
self-interaction to some extent. This is clearly seen in the
case of the hydrogen atom.

In the present work, we do not evaluate the RPA en-
ergy self-consistently with the corresponding RPA poten-
tial. However, the RPA functional is a stationary expression
for the total energy. And even though the stationarity is be-
lieved to be limited,25 the results should be weakly sensi-
tive to the input Green’s function. This is indeed what we
observe in Fig. 7: RPA@HF and RPA@QSGW are in over-
all agreement. Surprisingly, RPA@HF appears slightly better
than RPA@QSGW even when the HF starting point is clearly
wrong. This statement calls for further investigations.

VI. CONCAVITY OF THE GW APPROXIMATION

How a particular approximation varies with fractional oc-
cupation number offers insight into its qualities and limita-
tions. In the exact theory, the total energy should be a straight
line in between the integral number of electrons.43, 44 Thus,
the derivative of the energy with respect to electron num-

ber should be constant in between two consecutive integers
and equal to the total energy difference. This last quantity
is nothing else but the orbital energy (including a possible
exchange-correlation discontinuity in the case of local Kohn-
Sham potentials).45, 46

In practice, the exchange-correlation approximations
never induce the perfect straight line behavior. The deviation
from the straight line is a sign of a localization or delocaliza-
tion error.11, 47 In general, the approximations to DFT yield a
convex total energy and therefore suffer from a delocalization
error. An electron added to a system made of two identical
well-separated subsystems minimizes its energy by splitting:
half an electron goes on each subsystem. On the other hand,
the HF approximation induces a concave total energy and is
therefore affected by a localization error. The aforementioned
extra electron lowers its energy by localizing on one single
subsystem. In the exact theory, spreading or localizing the
electron should not affect the total energy.

In Ref. 42, we established that for clusters in Na and
certain defects in SiC, localized energy levels were slightly
concave with respect to occupation. The concavity can be ac-
cessed from the ordering between the LUMO energy of a pos-
itive ion and the HOMO energy of the corresponding atom, if
one assumes a monotonic behavior of the orbital energy as a
function of the fractional number of electrons. This is gener-
ally the case, except for MP2 to a small extent.48

In Fig. 8, we recast the previously calculated orbital en-
ergies now considering �SCF as the reference. From the
upper panel, one can observe that the HF approximation is
clearly concave. Indeed, the HOMO energy of the atom is al-
ways much lower than the total energy difference, whereas
the LUMO energy of the positive ion is always much higher.
The atom HOMO energy, nor the cation LUMO energy, are a
good estimate for the total energy difference. The deviation
is very large in both cases. Following Slater’s argument,49
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upper panel compares HF orbital energies to the HF total energy difference.
The lower panel compares GW@HF orbital energies to the RPA@HF total
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let us assume that the deviation from the straight line can
be approximated by a second order polynomial. Under this
mild assumption, Slater proposed to use the orbital energy at
half charge to best approximate the total energy difference.
Alternatively, under the same assumption, we proposed in
Ref. 42 to approximate the total energy difference with the
mean-value of the HOMO of the atom and the LUMO of the
positive ion,

I ≈ −εN
HOMO + εN−1

LUMO

2
. (24)

With this alternative evaluation of the ionization energy, there
is no need to perform GW calculations for half charges. It
requires nevertheless to perform two separate calculations.
The outcome of the mean-value technique is given in Fig. 8
with the diamond symbols. For HF energies, the agreement
between the mean-value and the �SCF energy difference is
striking.

In the lower panel of Fig. 8, we compare the GW orbital
energies to the RPA total energies. In this case, the HOMO
energy of the atom is always slightly lower than the total en-
ergy difference, whereas the LUMO energy of the positive ion
is always moderately higher. This proves the weak concavity
of the GW approximations. Compared to HF, the GW orbital
energies are much better estimates to the total energy differ-
ence. The associated localization error is then much weaker
than the one of HF. The mean-value technique within GW
yields a nice estimate of the RPA �SCF procedure. Only the
end of the first row atom series deviates noticeably. This con-
clusion confirms our previous works on sodium clusters42 on
defects in solids50, 51 that first identified the slight concavity
of the GW approximation. We confirm here that the mean-
value technique is a more correct estimate to the total energy
difference than the mere atom HOMO or cation LUMO.

VII. CONCLUSIONS

In this article, we described an implementation of the
GW approximation to the electronic self-energy for atoms.
This Gaussian basis set implementation does not need aux-
iliary functions and is based on an exact convolution in the
frequency domain, so that no extra technical approximation
is made besides the choice of the basis set. In addition to
the usual perturbative approach to GW such as GW@LDA or
GW@HF, we introduced the recently proposed self-consistent
scheme named QSGW. The RPA correlation energies were
obtained as a mere by-product of the code.

We considered different flavors of the GW approxima-
tion (GW@HF or QSGW) for the light atoms, from H to
Ar. Noticeably, we calculated non-spherical atoms and spin-
polarized systems, which have never been treated within GW
to the best of our knowledge. An important technical conclu-
sion of the present work is the slow convergence of the GW
calculations with respect to the basis set size. This is however
not completely surprising, when compared to RPA energy or
MP2 energy convergence rates. The targeted error bar of 0.1
eV for HOMO/LUMO orbital energies could be reached only
at the expense of a large cc-pV5Z basis set.

We then demonstrated the reliability of the GW approxi-
mation for the HOMO energy of atoms and for the LUMO en-
ergy of the cations compared to the experimental data. Since
the HF approximation performs reasonably well for atoms
and ions, the difference between perturbative GW based on
HF (GW@HF) and self-consistent GW (QSGW) is not large,
even though QSGW is slightly better on average. When turn-
ing to total energies, one could infer that the main ingredi-
ent missing in the RPA correlation is the second-order ex-
change diagram, which is contained in MP2. Comparing the
total energy difference to the HOMO/LUMO orbital energy,
we could confirm the weak concavity of the GW approxima-
tion for fractional electron numbers. The mean-value between
the HOMO energy of the atom and the LUMO energy of the
positive ion appears as a correct way to evaluate the total en-
ergy difference.
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The random-phase approximation (RPA) is a promising approximation to the exchange-correlation

energy of density functional theory, since it contains the van der Waals (vdW) interaction and yields a

potential with the correct band gap. However, its calculation is computationally very demanding. We

apply a range-separation concept to RPA and demonstrate how it drastically speeds up the calculations

without loss of accuracy. The scheme is then successfully applied to a layered system subjected to weak

vdW attraction and is used to address the controversy of the self-diffusion in silicon. We calculate the

formation and migration energies of self-interstitials and vacancies taking into account atomic relaxations.

The obtained activation energies deviate significantly from the earlier calculations and challenge some of

the experimental interpretations: the diffusion of vacancies and interstitials has almost the same activation

energy.

DOI: 10.1103/PhysRevLett.108.256403 PACS numbers: 71.15.�m, 61.72.Bb, 61.72.uf

The quest for the exact exchange-correlation energy of
density functional theory (DFT) is endless of course.
However, the random-phase approximation (RPA) [1,2] is
now believed to be a huge step forward. It is now common-
place to cite the RPA as the first-principles method that
correctly describes the weak van der Waals (vdW) inter-
action [3], which is prominent for many important prob-
lems: physisorption [4–6] and layered system binding
[7,8], for instance. A much less known feature of RPA is
the correct prediction of band gaps, as opposed to the large
underestimation of the local and semilocal approximation
to DFT. It has been demonstrated recently [9] that the
exchange-correlation potential obtained from RPA closely
resembles the GW approximation [10], which is nowadays
the most robust method to predict band gap of solids.

The correctness of the band gaps would make RPA a
method of choice for the properties of defects in semi-
conductors and insulators. The underestimation of the band
gap in the calculations is known to be the reason why the
usual local and semilocal approximations fail for defects in
semiconductors [11,12]. Whereas the calculation of the
energetic of point defects relies on total energies only, a
poor description of the band structure will still affect the
final formation energies.

An approach with no band gap problem should be able to
clarify the experimental controversy about the self-
diffusion in silicon. Although silicon can be regarded as
the best characterized material ever and although the self-
diffusion is a key parameter for industrial processes, there
is still no unanimous interpretation for this phenomenon
for silicon [13–20]. Self-diffusion in solids is governed by
the formation and the migration of point defects, namely,
vacancies and self-interstitials.

For the above mentioned reasons, RPA is a very appeal-
ing framework. However, its application has been limited

so far to simple systems cases, because of its numerical
intricacies. Its convergence behavior is so bad that most
groups had to employ extrapolation techniques [7,21,22] to
infer the converged properties out of a few underconverged
calculations. Furthermore, the scaling with system size is
dramatically high and the application to point defects in
supercells would be out of reach.
In this Letter, we introduce a range-separated framework

for the calculation of the RPA correlation energy. The
short-range (SR) part is to be approximated with a local
density approximation (LDA), whereas the long-range
(LR) part is to be calculated exactly. This approach speeds
up the calculations with a controlled loss of accuracy. We
demonstrate its robustness calculating a wide variety of
covalent crystals and a vdW bonded system, namely, hex-
agonal boron nitride. Within this approach, the system size
required for an accurate description of point defects is
made accessible. We apply the method to the calculation
of the self-diffusion in silicon and show that the commonly
used ab initio values need to be drastically revised.
A RPA calculation relies on the calculation of the elec-

tronic polarizability. The convergence of the RPA energy is
surprisingly slow against both the basis representation of
the polarizability and the number of empty states that
should be included in the sum-over-state formula [21,23].
We propose to overcome this situation thanks to the range-
separation idea. Following Toulouse and co-workers
[24,25], the Coulomb interaction v can be split into SR
and LR components:

vðrÞ ¼ 1� erfðr=rcÞ
r

þ erfðr=rcÞ
r

; (1)

where rc is a cutoff radius (Hartree atomic units are em-
ployed throughout the Letter).
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At variance with Toulouse and co-workers, the purpose
of the splitting is not to fix some SR deficiencies of the
RPA, but simply to accelerate the convergence of the RPA
energies. We intend to benefit from the fast decay of the LR
part of the Coulomb interaction in Fourier space
4�=q2 exp½�ðrcqÞ2=4�. In comparison, the bare Coulomb
interaction does not contain the exponential term.

A LDA evaluation of the RPA energy [26] noticeably
overestimates the computed RPA energy. It is sensible to
anticipate that the LDA is a reliable approximation for the
SR part of RPA but not for the LR. Hence, we propose to
evaluate the total RPA correlation energy as follows:

ERPA
c ¼

Z
dr�RPA;jelliumc ½nðrÞ�nðrÞ

�
Z

dr�
LR-RPA;jellium
c ½nðrÞ; rc�nðrÞ

þ ELR-RPA;calc
c ðrcÞ; (2)

where nðrÞ is the electronic density, �RPA;jelliumc is the RPA
correlation energy density of the jellium subjected to the

bare Coulomb interaction, �
LR-RPA;jellium
c is the RPA corre-

lation energy density of the jellium with the LR-only

interaction, and finally ELR-RPA;calc
c is the calculated RPA

correlation energy with the same LR-only interaction. The
expression for the LR-RPA correlation energy can be
easily derived from the usual expression of the RPA energy
(see, e.g., Ref. [22]). The modified interaction is governed
by the cutoff radius rc, which plays the role of a conver-
gence parameter in our scheme. Indeed, if rc is set to 0, the
LR interaction turns out to be the full interaction and we
recover the usual expression for the RPA correlation en-
ergy. If rc is set to 1, the LR interaction vanishes and the
scheme turns out to be equal to the usual LDA evaluation to
the RPA correlation energy.

In order to implement Eq. (2) in solid state calculations,
an explicit expression for the LR-RPA correlation energy
density of jellium had to be establish. We numerically
evaluated the RPA integrals in jellium [27] using either
the Coulomb interaction or the LR interaction for different
rc values. The calculated energies were then interpolated
with a Padé approximant [28]. Figure 1 shows the behavior
of the computed RPA energies based on LDA wave func-
tions and energies as a function of the cutoff of the modi-
fied interaction. As the correlation energy is not linear with
respect to the interaction, the SR contribution is defined as
the difference between the total correlation and the LR-
only correlation. First of all, our RPA correlation energy
for the full interaction is in very good agreement with
previously published values: 6:12 eV=atom to be com-
pared to 6:11 eV=atom from Ref. [29]. The discrepancy
between the LDA evaluation of the RPA correlation energy
and the computed one arises mainly from the LR part: the
LDA evaluation of the SR contribution nicely reproduces
the explicit calculation for radius as large as rc ¼ 4 bohr.

This observation confirms the assumption we made in
Eq. (2) when approximating the total RPA correlation
energy. The approximated total correlation energy (cross
symbols) closely follows the full calculation shown with
the horizontal line.
Figure 1 also shows the convergence parameters for the

different values of rc. The use of a LR-only interaction is
very convenient for a plane-wave expansion. Firstly, the
polarizabilities, which are required for a RPA calculation,
are two point functions and therefore their calculation is
massively accelerated when lowering in the plane-wave
cutoff energy. Secondly, the number of empty states re-
quired to achieve convergence is largely reduced, since the
exponential decay in the LR-only interaction in Fourier
space drastically decreases the coupling between the occu-
pied states and the high energy empty states.
For practical applications, one has to determine the

largest radius rc that still captures the desired physical
effects. The cutoff radius has to be considered as a con-
vergence parameter. In order to appreciate the relevant
range for rc, Table I shows the atomization energy of
selected crystals. The list includes a metal, narrow and
wide band gap semiconductors, zinc blende and wurzite
semiconductors. The atomization energy can be considered
as a difficult test for the range-separation technique,
since it compares solids to atoms, which have noticeably
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FIG. 1 (color online). LR-RPA (filled symbols) and SR-RPA
(open symbols) correlation energies of bulk silicon for lattice
constant a ¼ 10:26 bohr, as a function of the cutoff radius rc ¼
1=!. The SR-RPA correlation energy is obtained as the RPA
correlation energy minus the LR-RPA correlation energy. The
explicit calculation is displayed with squares and LDA with
circles. The total correlation is displayed with crosses. The
horizontal line emphasizes the calculated RPA correlation en-
ergies with full Coulomb interaction. Each point is associated
with the corresponding convergence parameters necessary to
achieve a 2 meV=atom accuracy: first, the cutoff energy for
the polarizability (Ha), and second, the number of states to be
included in the expression of the polarizability.
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different spatial extension. If we compare the range-
separated RPA to the standard RPA, we conclude that rc ¼
0:5 bohr yield converged results. When dealing with larger
atoms, not in the first row of the periodic table, a larger
value for rc can be safely retained. The overall agreement
of RPA with respect to experiment is very good.

The proposed range-separated technique is highly rele-
vant for vdW bonded system. Indeed, our scheme should
automatically describe the covalent bond with the LDA
quality and the distant vdW bonds with the RPA precision.
This statement is exemplified in Fig. 2 with the interlayer
spacing of hexagonal boron nitride. In this system, LDA is
correct thanks to a fortunate compensation of errors and
PBE [30] largely overestimates the interlayer spacing.
Genuine RPA is known to be excellent for h-BN [7] and
clearly superior to the modelized vdW-DF approach [31].
Whereas rc ¼ 4 bohr is definitely too large; the range
separation using rc ¼ 1 or 2 bohr is sufficient to yield

the correct interlayer spacing and the correct elastic con-
stant C33.
We now turn to the large supercells necessary to predict

self-diffusion of silicon. The RPA potential yields a good
evaluation of the band gap (1.30 eV to be compared to the
experimental value of 1.17 eV) and therefore the energetics
of point defects in silicon should be strongly corrected with
respect to the LDA or PBE values. For completeness, we
also performed hybrid functional calculations within
HSE06 [32] and PBE0 [33]. For instance, HSE06 yields
a nice band gap of 1.20 eV for silicon.
The defect calculations are performed within 16, 64, and

216 atom cubic supercells. Care was taken about the
k-point convergence for RPA (2� 2� 2 grid) and for the
exact exchange (4� 4� 4 grid) [29]. The validity of a
cutoff radius rc ¼ 1:0 bohr was checked against a smaller
radius of rc ¼ 0:5 eV. The number of empty states was then
further reduced using an acceleration scheme [34].
The RPA scheme does not provide the forces easily.

Thanks to the similarity between the elastic constant of
LDA and RPA, we manually relaxed the few degrees of
freedom directly involved in the defect structure, and the
other ones were relaxed within LDA. This procedure yields
basically negligible energetical changes except for the va-
cancy that experiences a large Jahn-Teller distortion as exem-
plified in Fig. 3. In contrast with LDA, RPAmassively favors
the Jahn-Teller configuration against the tetrahedric environ-
ment (0.7 eV gain within RPA, almost 0 eV within LDA).
The formation and migration energies relevant for the

self-diffusion through neutral defects are summarized in
Table II. HSE06 and RPA show very similar trends, even

TABLE I. Atomization energy or binding energy of a selection
of crystals in eV per atom. RPA evaluation is given with our
range-separated scheme using different values of rc and with the
standard expression as a reference.

RPA with rc
Crystal PBE 2.0 1.0 0.5 RPA Expt.

Al 3.56 3.45 3.53 3.50 3.44 3.39

Si 4.63 4.56 4.60 4.64 4.63 4.62

�-SiC 6.49 6.01 6.08 6.11 6.12 6.34

Diamond 7.82 7.11 7.27 7.34 7.27 7.37

w-AlN 6.54 4.96 4.92 5.52 5.65 5.83

c-BN 7.80 5.90 5.84 6.29 6.28 6.68
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FIG. 2 (color online). Energy as a function of the interlayer
spacing d ¼ c=2 of hexagonal BN within LDA (dashed line),
PBE (solid line), RPA with rc ¼ 4, 2, or 1 (respectively, circles,
squares, or diamonds). The equilibrium spacing d0 and elastic
constant C33 are shown and compared to the modelized method
vdW DF [31] and to experiment [41,42].

FIG. 3 (color online). Silicon vacancy VSi formation energy in
a 63-atom supercell as a function of the nearest neighbor atom
distances. In the left-hand panel, the longest distance rlong is

fixed and the shortest one rshort is varied. In the right-hand panel,
rlong is fixed and rshort is varied. The absence of Jahn-Teller

distortion corresponds to rlong ¼ rshort. The atomic configuration

is displayed in the inset: The cube stands in the empty lattice site.
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though the energetics can differ in the details. We present
the small 16-atom supercell in order to allow comparison
with earlier quantum Monte Carlo (QMC) calculations
[35,36]. RPA seems to nicely approximate the high level
QMC method. However, our results show that the 16 atom
supercell is too small to achieve convergence, mainly
because of the long-ranged exchange interaction.

Generally speaking, the energy of all the defects is
underestimated by 0.7–1.0 eV by LDA and PBE compared
to HSE06 or RPA. The RPA formation energy compares
favorably with earlierGW calculations [37]. The migration
barriers are also underestimated with LDA and PBE.
Noticeably, the migration of self-interstitial in the hexago-
nal sites Sihex had a very low barrier (0.12 eV for LDA)
and, as a consequence, was the preferred mechanism for
self-interstitial migration for both LDA and PBE. When
turning to RPA (and HSE06), this diffusion path is com-
pletely ruled out against the following two-step path:
Sisplith110i ! Sihex ! Sisplith110i. The corresponding diffu-

sion activation energy (formationþ barrier) is 4.87 eV
within HSE06 and 5.26 eV within RPA. These values lie
in the range of the experimental values 4.95 eV [38] and
5.15 eV [39], obtained from the self-interstitial assisted
diffusion of zinc in silicon.

Concerning the vacancy diffusion, the situation is even
more debated. The positron annihilation spectroscopy is
not conclusive [13,14] and the diffusion measurements
have difficulties isolating the vacancy contribution
[15–20]. In calculations, the vacancy is known to converge
slowly with system size [40]. We therefore performed a
216-atom supercell calculation to ensure a 0.1 eV conver-
gence as shown in Table II. The vacancy diffusion activa-
tion energy within RPA 5.16 eV and HSE06 4.96 eV are
much higher than the corresponding LDA estimate 4.06 eV.
We confirm the warnings raised recently by some authors
[18]: the agreement between theory at the LDA level and

experiment seems to be completely fictitious. The diffusion
activation energy of interstitials and of vacancies is almost
the same: this piece of information is much of a surprise.
In conclusion, we demonstrated in this Letter the prac-

tical advantages of range separation when applied to RPA.
The SR is approximated within LDA and the LR part is
calculated exactly. This procedure is perfectly suited to
Fourier space approaches. The efficiency gain without
accuracy loss is so substantial that the application to the
properties of point defects becomes accessible using super-
cells as large as 216 atoms. RPA is a relevant trade-off
between the fast but not reliable LDA and the slow but
accurate QMC calculations. The described scheme allowed
us to produce an estimate for the activation energies of self-
diffusion in silicon. Our energies, which significantly de-
viate from the corresponding LDA or PBE values, are in
good agreement with respect to experiment for interstitials.
The diffusion path of interstitials is identified as a trans-
formation between two different configurations Sisplith110i
and Sihex. Surprisingly, the vacancy and the interstitial
activation energies are calculated to be very close.
We acknowledge insightful discussions with J.-P.

Crocombette, G. Roma, and E. Clouet. The calculations
presented here are performed with the plane-wave codes
ABINIT [43] and QUANTUM-ESPRESSO [44]. This work was

performed using HPC resources from GENCI-CINES and
GENCI-CCRT (Grant No. 2012-gen6018).
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