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Standard DFT has unfortunately some shortcomings

energie atomique - energies alternatives

Calculated gap (eV)

Bruneval
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Experimental gap (eV)
after van Schilfgaarde et al PRL 96 226402 (2008)
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A pervasive problem

Effective masses

Optical absorption
for transport in semiconductors

F. Bruneval

FIG. 1. Single-particle Hartree-Fock and local density
approximation eigenvalue spectra (eV) for the SiH4 molecule.
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How do go beyond within the DF T framework?

Not easy to find improvement within DFT framework
There is no such thing as a perturbative expansion
Perdew's Jacob's ladder does not help for the band gap

HEAVEN OF CHEMICAL ACCURACY

unoccupied {9;} generalized RPA
(e €5 hyper-GGA
tomique - energies alternatives 2 -
¥ iandier meta-GGA  after J. Perdew JCP (2005).
Vn GGA
n LSD
HARTREE WORLD
FIG. 1. Jacob’s ladder of density functional approximations to the

exchange-correlation energy.
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Many-body perturbation theory

Historically older than the DFT (1940-50's)!
Big names: Feynman, Schwinger, Hubbard, Hedin, Lundqvist

S — Green's functions
= propagator
£
G(rt,r't')= ks +.M,O_
o
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The Green's function

Exact ground state wavefunction: ‘N , O >

Creation, annihilation operator: Y/T (l" l ) , Y/ (l" t)
¢S

@ Y/T ( f ) N O> Is a (N+1) electron wavefunction
r ’ not necessarily in the ground state

@Y (r't)

N O > Is another (N+1) electron wavefunction
3
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0

Green's function definition

(NO[Y (rt)PT (r't")|N,0)

AR 2

=iG (rt,r't") T 1>

Mesures how an extra electron propagates from (r't’) to (rt).
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0

Green's function definition
(N O (r't"¥(rt)|N,0)
" 2
=iG"(r't' rt) T 11

Mesures how a missing electron (= a hole) propagates from
(rt) to (r't)).
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Final expression for the Green's function
(G(rt,r't')=
INO|T|¥ (rt)¥ (r'e")||N,0)

/

time-ordering operator
G(rt,r't")=G(rt,r't’)
~G"(r't', rt)

0

Compact expression that describes both the propagation
of an extra electron and an extra hole
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Lehman representation

iG(r,r’,t—t’)=< T[Y’(”)‘PT(”'W)]
Cej Closure relation
, 2. NN i
Lehman representation: f ( )

where

F. Bruneval

o —

Glr.r @)=Y

E(N+1,i)—E(N,0)

0 — €+zn

Exact

LE (N ,O) —E (N — 1 , l) excitation energies!
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Related to photoemission spectroscopy

O Ekin

hv

Energy conservation: before after
hv+E(N,0)=E_+E(N—1,i)

Quasiparticle energy: € =E(N,0)—E(N—-1,i)=E,, —hv
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And inverse photoemission spectroscopy

Ekin

N

N

Energy conservation:

F. Bruneval

before after
E_+E(N,0)=hv+E(N+1,i)

e =E(N+1,i)—E(N,0)=E, —hv
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Other properties of the Green's function

Galitskii-Migdal formula for the total energy:

E —lj d w Tr[(w—hO)ImG(w)]

total —
ola 1T

e Expectation value of any 1 particle operator (local or non-local)

eeeeeeeeeee (0)=lim Tr|OG|

t—t'
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How to calculate the Green's function?

oty

Feynman diagrams P +.M,O.

energie atomique - energies alternatives

Hedin's functional approach  PRA (1965).
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Hedin's coupled equations

6 coupled equations: 1=(r,t,0,)  2=(r,t,0,)

—> G(1,2)=G,(1,2)+] d34G,(1,3)2(3,4)G(4.,2) Dyson equation

S(1,2)=i [ d34G(1,3)W (1,4)T (4,2,3) self-energy

53(1,2)
5 G(4,5)

I(1,2,3)=5(1,2)6(1,3)+ [ d 4567 G(4,6)G(5,7)I(6,7,3)

vertex

X,(1,2)= —if d34G(1,3)G(4,1)I'(3,4,2) polarizability

£(1,2)=6(1,2)— [ d3v(1,3)X,(3,2) dielectric matrix

— W(laz):f d3e” (1,3)v(3,2) screened Coulomb interaction
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Simplest approximation

>(12)=iG(1"2)v(1,2) == Fock exchange

Dyson equation:
G=G,+G,2G

G=G,+G,XGy+...

Not enough: Hartree-Fock is know to be quite bad for solids
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Hartree-Fock approximation for band gaps

energie atomique - energies alternatives

F. Bruneval
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Calculated band gap [ eV |

b

B Hartree-Fock

b —

4 6 8 10 12 14 | 16
Experimental band gap [eV ]
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Hedin's coupled equations

6 coupled equations:

—> G(1,2)=G,(1,2)+] d34G,(1,3)2(3,4)G(4.,2) Dyson equation
S(1,2)=i [ d34G(1,3)W (1,4)T (4,2,3) self-energy
§3(1,2)

I(1,2,3)=5(1,2)6(1,3)+ [ d 4567

5Cla5) 040G (67.3)

Xo(1,2)=—i [ d34G(1,3)G (4,1)I (3,4.,2)

£(1,2)=6(1,2)— [ d3v(1,3)X,(3,2)

— W(laz):f d3e” (1,3)v(3,2) screened Coulomb interaction
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Hedin's coupled equations

6 coupled equations:

| + G(1,2):G0(1,2)+f d34G,(1,3)X(3,4)G(4,2) Dyson equation
S(1,2)=i [ d34G(1,3)W (1,4)T (4,2,3) self-energy
0
53(1,2)
I'(1,2,3)=6(1,2)6(1,3)+ 567 ——GH
(1.2.3)=8(1,2)8 (1,3)+ fe4567- =22 G616 57467

Xo(1,2)=—i [ d34G(1,3)G (4,1)I (3,4.,2)

£(1,2)=6(1,2)— [ d3v(1,3)X,(3,2)

1 W(laz):f d3e” (1,3)v(3,2) screened Coulomb interaction
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Hedin's coupled equations

6 coupled equations:

| + G(1,2)=G,(1,2)+ [ d34G,(1,3)2(3.4)G (4.,2) Dyson equation
2(1.2)=i [454G (1.2)W (1.2) Ft423) self-energy
I(12.3)=6(1.2)5(13)+ feasero=l2) o
9& 9 ) ’ ’ JU’5G(4,5>U\3 ’ s/ 9

Xo(1,2)=—i [434G(1,2)G (2,1) F{34:2)

£(1,2)=6(1,2)— [ d3v(1,3)X,(3,2)

1 W(laz):f 3¢ (1,3)v(3,2) screened Coulomb interaction

F. Bruneval 1%t Yarmouk school, Irbid 4 november 2010



Here comes the GW approximation

> (1,2)=iG(1,2)W(1,2)

X,(12)=—iG(1,2)G(2,1)
£(1,2)=6(1,2)— [ d3v(1,3)X,(3,2)

w(1,2)= | d3e (1,3)v(3,2)
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energie atomique - energies alternatives

What is W?

Interaction between electrons in vacuum:

V(F,F'): 1 82 ‘/

drre, |r—r'|

Interaction between electrons in a homogeneous polarizable medium:

= Wir,r')= 1 e

drrege, |r—r'|

\ Dielectric constant

of the medium

Dynamically screened interaction between electrons
in a general medium:

fa’r (r,r'"", w)

Pt '
_’,.|

W
(r 1", w) 4n€0
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W is frequency dependent

W can measured directly by Inelastic X-ray Scattering
W(g=0.80a.u, w)

30 ———r—m——r——r—rTrT
Exp. present Silicon
25 F —— Exp.Schiilke £ -
— - = » TDLDA Ehrnsp. ;f .
—.} gk —TDEDATLY #f Plasmon
Ce:j W I 1 frequency
—
T P
2 :
< 10
V: =
5
(b) 5 10 15 20 25 30 35 40
w [eV]
Zero below the band gap H-C Weissker et al. PRB (2010)
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GW has a “super” Hartree-Fock

Hartree-Fock Approximation GW Approximation
Zx(”l,’%): 2 (”1"2 w)=
u
ZLJqdw’G(rl’rz,w')v(rl,rz) fdw G(ryryw+w’)W(r r,w’)
Ce:j = bare exchange /
X (r. 1)
”1 F,

GW is nothing else but a “screened” version of
Hartree-Fock.

F. Bruneval 1%t Yarmouk school, Irbid 4 november 2010



Summary: DFT vs GW/

Electronic density Green's function

p(r) - Glrt,r't')

Non-local, dynamic

Local and static Depends onto empty states
exchange-correlation potential exchange-correlation operator
= self-energy
/
Vee (1) " 2(r,r'e)
Approximations: LDA, GGA, hybrids GW approximation

(ZGW(rt,r’t’)ziG(rt,r’,t NW(rt,r't ’))
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GW approximation gets good band gap
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i | I | 1 | 1 | 1 | |
0 2 4 6 8

experimental gap (eV)
after van Schilfgaarde et al PRL 96 226402 (2008)
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GW approximation
From Wikipedia, the free encyclopedia
The GW approximation (GWA) is an approximation made in order to calculate the self-energy of a many-body system. The approximation is that the expansion of the self-energy I in terms of the single particle Green function
G and the screened interaction W
E=1iGW -GWGWG+ ---
can be truncated after the first term:
a1 GW
Another way to say the same thing is that that self-energy is expanded in a formal Taylor series in powers of the screened interaction W and the lowest order term is kept in the expansion in GWA

To put this in context, if one replaces W by the bare Coulomb interaction, one generates the usual series for the self-energy found in most many-body textbooks. The GWA with W replaced by the bare Coulomb yields nothing
other than the Hartree-Fock exchange potential (self-energy). Therefore, loosely speaking, the GWA represents a type of dynamically screened Hartree-Fock self-energy.

In a solid state system, the series for the self-energy in terms of W should converge much faster than the traditional series in the bare Coulomb interaction. This is because the screening of the medium reduces the effective
strength of the Coulomb interaction: for example, if one places an electron at some position in a material and asks what the potential is at some other position in the material, the value is smaller than given by the bare Coulomb

interaction (inverse distance between the points) because the other electrons in the medium polarize (maove or distort their electronic states) so as te screen the electric field. Therefore, W is a smaller quantity than the bare
Coulomb interaction so that a series in W should have higher hopes of converging quickly.

Software supporting the GW approximation

[edit]
= ABINIT - plane wave pseudopotential method
» Spex @ - full-potential (linearized) augmented plane-wave (FP-LAPW) method
= SaX - plane wave pseudopotential method
» YAMEO code- plane wave pseudopotential method
References [edit]

» L. Hedin, Phys. Rev. 139, A796 (1965)
» W.G. Aulbur, L. Jonsson and |.W. Wilkins, Solid State Physics 54, 1 (2000) full version in postscript (7,3MB) &
» F_Aryasetiawan, O. Gunnarsson, arXiv:cond-mat/9712013w1 &
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Available GW codes
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GW approximation

From Wikipedia, the free encyclopedia

The GW approximation (GWA) is an approximation made in order to calculate the self-energy of a many-body system. The approximation is that the expansion of the self-energy I in terms of the single particle Green function
G and the screened interaction W

E=1iGW -GWGWG+ ---
can be truncated after the first term:

a1 GW
Another way to say the same thing is that that self-energy is expanded in a formal Taylor series in powers of the screened interaction W and the lowest order term is kept in the expansion in GWA
To put this in context, if one replaces W by the bare Coulomb interaction, one generates the usual series for the self-energy found in most many-body textbooks. The GWA with W replaced by the bare Coulomb yields nothing
other than the Hartree-Fock exchange potential (self-energy). Therefore, loosely speaking, the GWA represents a type of dynamically screened Hartree-Fock self-energy.
In a solid state system, the series for the self-energy in terms of W should converge much faster than the traditional series in the bare Coulomb interaction. This is because the screening of the medium reduces the effective
strength of the Coulomb interaction: for example, if one places an electron at some position in a material and asks what the potential is at some other position in the material, the value is smaller than given by the bare Coulomb

interaction (inverse distance between the points) because the other electrons in the medium polarize (maove or distort their electronic states) so as te screen the electric field. Therefore, W is a smaller quantity than the bare
Coulomb interaction so that a series in W should have higher hopes of converging quickly.

Software supporting the GW approximation ledit]

= ABINIT - plane wave pseudopotential method

* SpEx @ - full-potential (linearized) augmented plane-wave (FP-LAPW) method
* S{X - plane wave pseudopotential method

* YAMEO code- plane wave pseudopotential method

Rizferences [edit]

» L. Hedin, Phys. Rev. 139, A796 (1965)
» W.G. Aulbur, L. Jonsson and ).W. Wilkins, Solid State Physics 54, 1 {2000) full version in postscript (7,3MB) &
» F_Aryasetiawan, O. Gunnarsson, arXiv:cond-mat/9712013w1 &

has a GW code inside

F. Bruneval
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Code history

Rex Godby Lucia Reining Marc Torrent Fabien Bruneval M. Giantomassi
Giovanni Onida G.-M. Rignanese
PRL 1986 Valerio Olevano

~ 1993

¢S

energie atomique - energies alternatives

B

2001

abinit.org

Today
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How to get G?

Remember the :
. W—€,XIn
Ce:] where the fi ( | & ) and the Ei are complicated quantities

But for like Kohn-Sham electrons:

KS( ) KS*( ,)
GKS(r r' w):z i \)®; AT

i (W—€. *in

This can be considered as the

€174
| > Onecanget W and 2

F. Bruneval 1%t Yarmouk school, Irbid 4 november 2010



GW as a perturbation with respect to LDA

GW quasiparticle equation:

ot 2 ()0 )= | )

l l l

=9 KS equation:

[ho _l_V)I;CDA”(P?DA>:E?DA‘(P?DA>

e GW LDA
Approximation : (Pi N(PZ_

F. Bruneval 1%t Yarmouk school, Irbid 4 november 2010



GW as a perturbation with respect to LDA

GW quasiparticle equation:

<(PiLDA| [ho-l- ZXC<EGW)]‘(P;DA>:EQW

I I I
e KSequation:

<(PiLDA‘ [ho-l- V)I;CDA] ‘(PZLDA>: EZ_LDA

" ;DA:< ;DAHZ (EQW)_ LDA” I'JDA>

l ) ) ) XC I

F. Bruneval 1t Yarmouk school, Irbid 4 november 2010



Linearization of the energy dependance

GW ;DA:< ;DA‘[ZXC(EQW')_VLDA]‘ I.JDA>

I I I I xXC I

Taylor expansion:

02
5 (€)= 5, (e (e — el 2 4

A ENELUR T

Z.=1/11 02 s
where —
l o€
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Quasiparticle equation

A typical ABINIT ouptput for Silicon at Gamma point

k = 0.000 0.000 0.000

Band EQ <VxcLDA> SigX SigC (EQ) Z dSigC/dE Sig (E) E-EOQ E
4 0.506 -11.291 -12.492 0.744 0.775 -0.291 -11.645 -0.354 0.152
5 3.080 -10.095 -5.870 -3.859 0.775 =-0.290 -9.812 0.283 3.363

E~0 gap

E”"GW gap

LDA LDA|| _LDA
e

XC l
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Flow chart of a typical GW calculation

a N
DFT
\_ Y,
LDA  LDA
b; €
— —— == —
e - .
I |
| calculate W
|
\_ )
|
S ] —=
If self-consistent | v
quW Gw | : A
i €
L — — —| calculate G*W
\_ )

occupied AND empty states

Eigenvalues
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GW approximation gets good band gap

] _' | ! I% ! | ! E | ! _..I |
QO o SOZ .o
_ o S E{E{ i
o = N @© ¢
UE} < = S |V
= s (-_)E (“E O O -
. 2 NS <
L 8 O_ % g .5 3 ]
a 4L <N 0 C - g N *_
o 4 @ Sg<IN T
g <G C{%E ¢ E G
£ o Qg v P -
= D_“mn —_ . O
— O
L2 s o= o) _
g o DETT [T O
o= d i
- 3B b i
oF V- W:LDA -~
O O©:GW(LDA)
i | I | 1 | 1 | 1 | |
0 2 4 6 8

experimental gap (eV)
after van Schilfgaarde et al PRL 96 226402 (2008)
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Clusters de sodium

Na, +e < Na,

r
e(HOMO, Na
E0<Na4)_Eo(Na:1r): < ( ’ _,‘_‘)
e(LUMO,Na4 )
\
S
3
;::él:“-
<
g
+ b = 255 2 3)) 7
Na “/Na
4 4 N LDA HF B3LYP GW

Bruneval PRL (2009)
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Calculs de défauts avec l'approximation GW

Carbure de Silicium cubique

3C-SiC

Calcul d'un systéme a 215 atomes

1%t Yarmouk school, Irbid 4 november 2010
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Barriere de transformation

12- GW-
, A
3 | /‘\ Exp . |
> / E =22+03eV
Qv A
— 10 2.32 e .
> T
A ®)) %
-
)
- \
L m—a charge +
8- a—acharge 0 N
\_/ b e—e charge - (’/
A - |
xS oW [
Vg v V Cs
Bruneval et Roma soumis (2010)
F. Bruneval 1% Yarmouk school, Irbid 4 november 2010



Band Offset at the interface between two semiconductors

Very important for electronics!
Si Si02

conduction
band offset

Example: Si/SiO, interface for transistors

valence
band offset

energie atomique - energies alternatives

z (a.u.)

GW correction with respect to LDA R. Shaltaf PRL (2008).
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Summary

 The GW approximation

* The calculations are extremely heavy, so that we
resort to many additional technical approximations:

¢SSP .
 The complexity comes from

 Dependance upon empty states
 Non-local operators

* Dynamic operators that requires freq.
convolutions

* There are still some other approximations like the
Plasmon-Pole model... that I'll discuss during the
practical session...

F. Bruneval 1t Yarmouk school, Irbid 4 november 2010
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