

energie atomique • energies alternatives

The *GW* approximation in less than 60 minutes

F. Bruneval Service de Recherches de Métallurgie Physique CEA, DEN

I. Standard DFT suffers from the band gap problem

II. Introduction of the Green's function

nergie atomique • energies alternatives

III. The GW approximation

IV. The GW code in ABINIT and the $G_{_0}W_{_0}$ method

V. Some applications

Standard DFT has unfortunately some shortcomings

A pervasive problem

FIG. 1. Single-particle Hartree-Fock and local density approximation eigenvalue spectra (eV) for the SiH₄ molecule.

F. Bruneval

How do go beyond within the DFT framework?

Not easy to find improvement within DFT framework There is no such thing as a perturbative expansion Perdew's Jacob's ladder does not help for the band gap HEAVEN OF CHEMICAL ACCURACY unoccupied $\{\phi_i\}$ generalized RPA hyper-GGA εx τ and/or $\nabla^2 n$ meta-GGA eneraie atomique • eneraies alterr after J. Perdew JCP (2005). ∇n GGA LSD n HARTREE WORLD

FIG. 1. Jacob's ladder of density functional approximations to the exchange-correlation energy.

Need to change the overall framework!

F. Bruneval

I. Standard DFT suffers from the band gap problem

II. Introduction of the Green's function

III. The GW approximation

IV. The GW code in ABINIT and the $G_{_0}W_{_0}$ method

V. Some applications

Many-body perturbation theory

Historically older than the DFT (1940-50's)! Big names: Feynman, Schwinger, Hubbard, Hedin, Lundqvist

The Green's function

Exact ground state wavefunction: |N , 0
angle

Creation, annihilation operator: $\Psi^{\dagger}(\mathbf{r} t)$, $\Psi(\mathbf{r} t)$

nergie atomique • energies alternatives

•
$$\Psi^{\dagger}(\mathbf{r}t)|N,0\rangle$$

is a (N+1) electron wavefunction not necessarily in the ground state

2 $\Psi^\dagger(r't')|N,0
angle$ is another (N+1) electron wavefunction

Let's compare the two of them!

Green's function definition

$$= i G^{e}(rt, r't')$$
 for $t > t'$

Mesures how an extra electron propagates from (r't') to (rt).

Green's function definition

 $= i G^{h}(r't', rt)$ for t' > t

Mesures how a missing electron (= a hole) propagates from (rt) to (r't').

Final expression for the Green's function

$$i G(\mathbf{r}t, \mathbf{r}'t') = \langle N, \mathbf{0} | T [\Psi(\mathbf{r}t) \Psi^{\dagger}(\mathbf{r}'t')] | N, \mathbf{0} \rangle$$

time-ordering operator

energie atomique • energies alternatives

$$G(rt, r't') = G^{e}(rt, r't') -G^{h}(r't', rt)$$

Compact expression that describes both the propagation of an extra electron and an extra hole

Lehman representation

$$i G(\mathbf{r}, \mathbf{r}', t-t') = \langle N, 0 | T [\Psi(\mathbf{r}t) \Psi^{\dagger}(\mathbf{r}'t')] | N, 0 \rangle$$
Closure relation
$$\sum_{N,i} | N, i \rangle \langle N, i |$$
Lehman representation:
$$G(\mathbf{r}, \mathbf{r}', \omega) = \sum_{i} \frac{f_{i}(\mathbf{r}) f_{i}^{*}(\mathbf{r}')}{\omega - \epsilon_{i} \pm i \eta}$$
where
$$\epsilon_{i} = \begin{cases} E(N+1,i) - E(N,0) \\ E(N,0) - E(N-1,i) \end{cases}$$
Exact excitation energies!

F. Bruneval

Related to photoemission spectroscopy

Energy conservation: before after $h \nu + E(N,0) = E_{kin} + E(N-1,i)$

Quasiparticle energy: $\epsilon_i = E(N,0) - E(N-1,i) = E_{kin} - hv$

And inverse photoemission spectroscopy

Energy conservation: before after $E_{kin} + E(N,0) = hv + E(N+1,i)$

uasiparticle energy:
$$\epsilon_i = E(N+1,i) - E(N,0) = E_{kin} - hv$$

Other properties of the Green's function

Galitskii-Migdal formula for the total energy:

$$E_{total} = \frac{1}{\pi} \int_{-\infty}^{\mu} d\omega \operatorname{Tr}\left[\left(\omega - h_{0}\right) \operatorname{Im} G\left(\omega\right)\right]$$

Expectation value of any 1 particle operator (local or non-local) $\langle O \rangle = \lim_{t \to t'} Tr[OG]$

energie atomique • energies alternatives

I. Standard DFT suffers from the band gap problem

II. Introduction of the Green's function

nergie atomique • energies alternatives

III. The GW approximation

IV. The GW code in ABINIT and the $G_{_0}W_{_0}$ method

V. Some applications

How to calculate the Green's function?

Feynman diagrams

3

energie atomique • energies alternatives

Hedin's functional approach PRA (1965).

6 coupled equations: $1 = (\mathbf{r_1} t_1 \sigma_1)$ $2 = (\mathbf{r_2} t_2 \sigma_2)$

→
$$G(1,2) = G_0(1,2) + \int d34 G_0(1,3) \Sigma(3,4) G(4,2)$$
 Dyson equation
 $\Sigma(1,2) = i \int d34 G(1,3) W(1,4) \Gamma(4,2,3)$ self-energy
 $\Gamma(1,2,3) = \delta(1,2) \delta(1,3) + \int d4567 \frac{\delta \Sigma(1,2)}{\delta G(4,5)} G(4,6) G(5,7) \Gamma(6,7,3)$ vertex
 $X_0(1,2) = -i \int d34 G(1,3) G(4,1) \Gamma(3,4,2)$ polarizability
 $\varepsilon(1,2) = \delta(1,2) - \int d3 v(1,3) X_0(3,2)$ dielectric matrix
 $W(1,2) = \int d3 \varepsilon^{-1}(1,3) v(3,2)$ screened Coulomb interaction

Simplest approximation

Not enough: Hartree-Fock is know to be quite bad for solids

Hartree-Fock approximation for band gaps

energie atomique • energies alternatives

6 coupled equations:

$$G(1,2) = G_0(1,2) + \int d34 \, G_0(1,3) \, \Sigma(3,4) \, G(4,2)$$
Dyson equation
$$\Sigma(1,2) = i \int d34 \, G(1,3) \, W(1,4) \, \Gamma(4,2,3)$$
self-energy
$$\Gamma(1,2,3) = \delta(1,2) \, \delta(1,3) + \int d \, 4567 \frac{\delta \, \Sigma(1,2)}{\delta \, G(4,5)} \, G(4,6) \, G(5,7) \, \Gamma(6,7,3)$$

$$X_0(1,2) = -i \int d34 \, G(1,3) \, G(4,1) \, \Gamma(3,4,2)$$

$$\varepsilon(1,2) = \delta(1,2) - \int d3 \, v(1,3) \, X_0(3,2)$$
W(1,2) = $\int d3 \, \varepsilon^{-1}(1,3) \, v(3,2)$
screened Coulomb interaction

energie atomique · energies alternativ

6 coupled equations:

$$G(1,2) = G_0(1,2) + \int d34 \, G_0(1,3) \, \Sigma(3,4) \, G(4,2)$$
 Dyson equation

$$\Sigma(1,2) = i \int d34 \, G(1,3) \, W(1,4) \, \Gamma(4,2,3)$$
 self-energy

$$\Gamma(1,2,3) = \delta(1,2) \, \delta(1,3) + \int d \, 4567 \, \frac{\delta \, \Sigma(1,2)}{\delta \, G(4,5)} \, G(4,6) \, G(5,7) \, \Gamma(6,7,3)$$

$$X_0(1,2) = -i \int d34 \, G(1,3) \, G(4,1) \, \Gamma(3,4,2)$$

$$\varepsilon(1,2) = \delta(1,2) - \int d3 \, v(1,3) \, X_0(3,2)$$

$$W(1,2) = \int d3 \, \varepsilon^{-1}(1,3) \, v(3,2)$$
 screened Coulomb interaction

energie atomique · energies alte

6 coupled equations:

$$G(1,2) = G_0(1,2) + \int d34 G_0(1,3) \Sigma(3,4) G(4,2)$$
Dyson equation
$$\Sigma(1,2) = i \int d34 G(1,2) W(1,2) \frac{\Gamma(4,2,3)}{\delta G(4,2)}$$
self-energy
$$\Gamma(1,2,3) = \delta(1,2) \delta(1,3) + \int d 4567 \frac{\delta \Sigma(1,2)}{\delta G(4,5)} G(4,6) G(5,7) \Gamma(6,7,3)$$

$$X_0(1,2) = -i \int d34 G(1,2) G(2,1) \frac{\Gamma(3,4,2)}{\delta G(4,5)}$$

$$\varepsilon(1,2) = \delta(1,2) - \int d3 v(1,3) X_0(3,2)$$

$$W(1,2) = \int d3 \varepsilon^{-1}(1,3) v(3,2)$$
screened Coulomb interaction

energie atomique · energies alt

Here comes the GW approximation

 $\Sigma(1,2) = i G(1,2) W(1,2)$

GW approximation

energie atomique • energies alternatives

$$\chi_0(1,2) = -i G(1,2) G(2,1)$$

 $\varepsilon(1,2) = \delta(1,2) - \int d3 v(1,3) X_0(3,2)$

 $W(1,2) = \int d3 \, \epsilon^{-1}(1,3) \, v(3,2)$

Interaction between electrons in vacuum:

$$V(\mathbf{r},\mathbf{r'}) = \frac{1}{4\pi\epsilon_0} \frac{e^2}{|\mathbf{r}-\mathbf{r'}|}$$

Interaction between electrons in a homogeneous polarizable medium:

eraie atomique • eneraies alter

Dynamically screened interaction between electrons in a general medium:

$$W(\mathbf{r},\mathbf{r}',\omega) = \frac{e^2}{4\pi\epsilon_0} \int d\mathbf{r}'' \frac{\varepsilon^{-1}(\mathbf{r},\mathbf{r}'',\omega)}{|\mathbf{r}''-\mathbf{r}'|}$$

W is frequency dependent

W can measured directly by Inelastic X-ray Scattering

Zero below the band gap

H-C Weissker et al. PRB (2010)

F. Bruneval

GW has a "super" Hartree-Fock

GW approximation gets good band gap

I. Standard DFT suffers from the band gap problem

II. Introduction of the Green's function

nergie atomique • energies alternative

III. The GW approximation

IV. The GW code in ABINIT and the $G_{0}W_{0}$ method

V. Some applications

Available GW codes

	P De B		New features Log in / create acc				ate account
		Article Discussion	Read	Edit View his	tory	Search	Q
	WIKIPEDIA	GW approximation					
œ	Main page Contents Featured content Current events Random article	The GW approximation (GWA) is an approximation made in order to calculate the self-energy of a many-body system. The approximation is that the expansion of G and the screened interaction W $\Sigma = i GW - GWGWG + \cdots$ can be truncated after the first term: $\Sigma \approx i GW$	the self	-energy Σ in terr	ns of th	he single particle Green	function
	 Interaction About Wikipedia Community portal Recent changes Contact Wikipedia Donate to Wikipedia Help 	Another way to say the same thing is that that self-energy is expanded in a formal Taylor series in powers of the screened interaction <i>W</i> and the lowest order term is kept in the expansion in GWA. To put this in context, if one replaces <i>W</i> by the bare Coulomb interaction, one generates the usual series for the self-energy found in most many-body textbooks. The GWA with <i>W</i> replaced by the bare Coulomb yields nothing other than the Hartree-Fock exchange potential (self-energy). Therefore, loosely speaking, the GWA represents a type of dynamically screened Hartree-Fock self-energy. In a solid state system, the series for the self-energy in terms of <i>W</i> should converge much faster than the traditional series in the bare Coulomb interaction. This is because the screening of the medium reduces the effective strength of the Coulomb interaction: for example, if one places an electron at some position in a material and asks what the potential is at some other position in the material, the value is smaller than given by the bare Coulomb interaction go that a series in <i>W</i> should have higher hopes of converging quickly.					
	▶ Toolbox	Software supporting the GW approximation					[edit]
	 Print/export Languages Italiano 日本語 中文 	ABINIT - plane wave pseudopotential method Spex @ - full-potential (linearized) augmented plane-wave (FP-LAPW) method SaX @ - plane wave pseudopotential method YAMBO code- plane wave pseudopotential method					
energie atomique • energies alternatives		References					[edit]

- L. Hedin, Phys. Rev. 139, A796 (1965).
- W.G. Aulbur, L. Jönsson and J.W. Wilkins, Solid State Physics 54, 1 (2000) full version in postscript (7,3MB) 🖉.
- F. Aryasetiawan, O. Gunnarsson, arXiv:cond-mat/9712013v1@.

Available GW codes

has a GW code inside

Code history

F. Bruneval

How to get *G*?

Remember the Lehman representation:

$$G(\mathbf{r}, \mathbf{r}', \omega) = \sum_{i} \frac{f_i(\mathbf{r}) f_i^*(\mathbf{r}')}{\omega - \epsilon_i \pm i\eta}$$
where the $f_i(\mathbf{r})$ and the ϵ_i are complicated quantities

energie atomique • energies alternatives

But for independent electrons like Kohn-Sham electrons:

$$G^{KS}(\mathbf{r},\mathbf{r}',\omega) = \sum_{i} \frac{\varphi_{i}^{KS}(\mathbf{r})\varphi_{i}^{KS*}(\mathbf{r}')}{\omega - \epsilon_{i}^{KS} \pm i\eta}$$

This can be considered as the best guess for G

One can get W and Σ^{GW}

F. Bruneval

GW as a perturbation with respect to LDA

GW quasiparticle equation:

$$\left[h_{0}+\Sigma_{xc}(\epsilon_{i}^{GW})\right]\left|\varphi_{i}^{GW}\right\rangle=\epsilon_{i}^{GW}\left|\varphi_{i}^{GW}\right\rangle$$

GW as a perturbation with respect to LDA

GW quasiparticle equation:

KS equation:

$$\langle \varphi_i^{\text{LDA}} | [h_0 + \Sigma_{xc}(\epsilon_i^{GW})] | \varphi_i^{\text{LDA}} \rangle = \epsilon_i^{GW}$$

energie atomique • energies alternatives

$$\langle \varphi_i^{\text{LDA}} | [h_0 + v_{xc}^{\text{LDA}}] | \varphi_i^{\text{LDA}} \rangle = \epsilon_i^{\text{LDA}}$$

$$\epsilon_{i}^{GW} - \epsilon_{i}^{\text{LDA}} = \left\langle \varphi_{i}^{\text{LDA}} \middle| \left[\Sigma_{xc}(\epsilon_{i}^{GW}) - v_{xc}^{\text{LDA}} \right] \middle| \varphi_{i}^{\text{LDA}} \right\rangle$$

Linearization of the energy dependance

$$\boldsymbol{\epsilon}_{i}^{GW} - \boldsymbol{\epsilon}_{i}^{\text{LDA}} = \left\langle \boldsymbol{\varphi}_{i}^{\text{LDA}} \middle| \left[\boldsymbol{\Sigma}_{xc} \left(\boldsymbol{\epsilon}_{i}^{GW} \right) - \boldsymbol{v}_{xc}^{\text{LDA}} \right] \middle| \boldsymbol{\varphi}_{i}^{\text{LDA}} \right\rangle$$

Not yet known

Taylor expansion:

$$\underbrace{\square \Sigma_{xc}(\epsilon_i^{GW}) = \sum_{xc}(\epsilon_i^{\text{LDA}}) + (\epsilon_i^{GW} - \epsilon_i^{\text{LDA}}) \frac{\partial \Sigma_{xc}}{\partial \epsilon} + \dots}{\partial \epsilon}$$

energie atomique • energies alternatives

Final result:

$$\boldsymbol{\epsilon}_{i}^{GW} = \boldsymbol{\epsilon}_{i}^{\text{LDA}} + Z_{i} \left\langle \boldsymbol{\varphi}_{i}^{\text{LDA}} \middle\| \left[\boldsymbol{\Sigma}_{xc} (\boldsymbol{\epsilon}_{i}^{\text{LDA}}) - \boldsymbol{v}_{xc}^{\text{LDA}} \right] \middle| \boldsymbol{\varphi}_{i}^{\text{LDA}} \right\rangle$$

where
$$Z_i = 1/\left(1 - \frac{\partial \Sigma_{xc}}{\partial \epsilon}\right)$$

F. Bruneval

A typical ABINIT ouptput for Silicon at Gamma point

Flow chart of a typical GW calculation

I. Standard DFT suffers from the band gap problem

II. Introduction of the Green's function

nergie atomique • energies alternatives

III. The GW approximation

IV. The GW code in ABINIT and the $G_{_0}W_{_0}$ method

V. Some applications

GW approximation gets good band gap

Clusters de sodium

1st Yarmouk school, Irbid 4 november 2010

F. Bruneval

energie atomique • energies alternative

Calculs de défauts avec l'approximation GW

Calcul d'un système à 215 atomes

eneraie atomiaue • eneraies alternatives

Carbure de Silicium cubique 3C-SiC

F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

F. Bruneval

Band Offset at the interface between two semiconductors

GW correction with respect to LDA

R. Shaltaf PRL (2008).

Summary

- The GW approximation solves the band gap problem!
- The calculations are extremely heavy, so that we resort to many additional technical approximations: method named G₀W₀
- The complexity comes from
 - Dependance upon empty states
 - Non-local operators
 - Dynamic operators that requires freq. convolutions
- There are still some other approximations like the Plasmon-Pole model... that I'll discuss during the practical session...