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© Band structure & calculations
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Band structure & calculations

Band structure from one particle approximations

Any one-particle Hamiltonian: h(r)
— diagonalization

h(r)¢i(r) = cigi(r)

and ¢; is called the band structure.

HOWEVER, in reality,

2
H(ry,.rn) = Z —% + Z Vouclei(ri) + Z !

— Iri —jl

1

— ionization or affinity energy
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Band structure & calculations
Photoemission spectroscopy

hv
E kin Energy conservation:

@ Before the experiment
,I/)/\ / hv + E/\/70

O @ After the experiment
Eyin + En—1,i

hv — Egin = En—1, — Eno= — €
— ionization energy or binding energy or valence band structure
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Band structure & calculations
Wavefunctions methods
Hartree-Fock method: variationally best Slater determinant

#1(r1) ... on(r1)
p1(r2) ... on(r2)

Sy o(r, ..., ry) x : :

Su(tn) .. bulrn)

made of N one-particle wavefunctions ¢;.
£ = (0[H[®) ~ S [ arlo(o)f
= hFg; = €l g

E,-—”: obtained as N Lagrange multipliers
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Band structure & calculations
Hartree-Fock method
Valence Photoemission:
Dy_1,i(re, ..., ry—1)

oi(r) ... ¢imi(n) divi(r) ... on(r)
o1(r2) .. dici(r) divi(r2) ... on(r)

¢1(I’.N—1) ¢i—1(-|'N—l) diri(rn=1) .. on(rn-1)

Koopmans theorem:

e = (N,O[H|N,0) — (N — 1,i|H|N — 1, /)

The eigenvalues ¢; do have a physical meaning
Approximation: No relaxation of the other orbitals
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Band structure & calculations

Hartree-Fock results

lonization energy
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experimental ionization energy (eV)

calculated as the energy of the HOMO with gaussian 03
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Band structure & calculations

Hartree-Fock results

Homogeneous electron gas (=jellium) with constant density po
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Band structure & calculations

Hartree-Fock results

Band gap of semiconductors and insulators
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Band structure & calculations
Density Functional Theory
DFT well assessed for the structure of solids

BUT

L = (O|HS| o) — Ze,KS/drlcé,"s(r)l2

= hS(Ngf(r) = 1 (r)

E,KS obtained as N Lagrange multipliers
Kohn-Sham energies cannot be interpreted as removal/addition
energies
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Band structure & calculations

Kohn-Sham

Band gaps of semiconductors and insulators
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experimental gap (eV)
adapted from M. van Schilfgaarde et al., PRL 96 226402 (2006)
— underestimated
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Band structure & calculations

The solution?

Need for a tool that gives the correct band structure ¢;
i.e. the correct differences En g — En+1,i

= Green's functions
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Theory: from Hartree-Fock to GW
Outline

© Theory: from Hartree-Fock to GW
@ Functional approach to the MB problem
@ Hedin's equations
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Theory: from Hartree-Fock to GW

Green's functions: from HF to GW

@ Review the many-body equations with a functional approach
(Hedin 1965)

@ Convince you that GW is a natural extension beyond HF

use of zero temperature Green's function formalism:

iG(1,2) = <N,0|T[wH(1)wL(2)] N, 0)

(N, 0|V ()WL (2)IN,0) if & >t
—(N,0[WL2Wy(1)IN,0) if t <t
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Theory: from Hartree-Fock to GW

Green's functions: from HF to GW

t1 >t 1 <t
(N, 0[Wp(1)W],(2)|N,0) (N, 0|WL,(2)W4(1)|N,0)
wl,(2)[N,0) W(2)|N,0)
wi(1)|N,0) Vi (1)[N,0)
(ry,ty) (ryst5)
o O
o O
(I’1,t1) (r1’t1)
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Theory: from Hartree-Fock to GW

Functional approach to the MB problem

To determine the 1-particle Green’s function
[i 0 ho]G + / G =1
f— — i | vG =
ot 0 2
where hy = —%Vz + Vext is the independent particle Hamiltonian.

The 2-particle Green's function describes the motion of 2 particles.
Unfortunately, a whole hierarchy of equations:
G1(1,2) — G2(1,2;3,4)
G2(1,2;3,4) «— G3(1,2,3;4,5,6)
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Theory: from Hartree-Fock to GW
Self-energy

Perturbation theory starts from what is known to evaluate what is
not known, hoping that the difference is small...

Let's say we know Gg that corresponds to the Hamiltonian hg
Everything that is unknown is put in

r=G'-G1

This is the definition of the self-energy
Thus,

[1——h0]G /ZG—l

to be compared with

.0 ,
[/at—ho]G—i—//ng:l

GW approximation Fabien Bruneval



Theory: from Hartree-Fock to GW

Functional derivation of the MB problem

Trick due to Schwinger (1951):

introduce a small external potential U(3), that will be made equal
to zero at the end, and calculate the variations of G; with respect
to U

Self-energy

5G~1(4,2)

¥(1,2) = —i/d3d4v(1+,3)G(1,4) 5U3)

Vertex function
§G71(1,2)

ra,23)=- 5U(3)

Dyson equation

G H1,2) = G 1(1,2) — U(1)8(1,2) — X(1,2)
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Theory: from Hartree-Fock to GW

Functional definition of the self-energy

=il -1
G =G, - X
Y = iGvl

. ox
=1+ [_IV+E] GGl

r®—1

v —iGv =%,

— Hartree Fock approximation
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Theory: from Hartree-Fock to GW

Functional definition of the self-energy

-1 -1
> = iGvl

r=1+ [—iv+§—§] GElr

yW = iGv

r®M =1+ ivGGv + ivGvG

¥ — Y« — GvGGv — GvGvG

— 2nd order in v
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Theory: from Hartree-Fock to GW

GW origins

PHYSICAL REVIEW VOLUME 139, NUMBIER 3\ 2 AUGUST 19065

New Method for Calculating the One-Particle Green’s Function with
Application to the Electron-Gas Problem*

Lars Hepint
Argonne National Laboratory, Argonne, Ilinois
(Received 8 October 1964; revised manuscript received 2 April 1965)

A set of successively more accurate seli-consistent equations for the one-electron Green’s function have been
derived. They correspond to an expansion in a screened potential rather than the bare Coulomb potential.
The first equation is adequate for many purposes. Each equation follows from the demand that a corre-
sponding expression for the total energy be stationary with respect to variations in the Green’s function, The
main information to be obtained, besides the total energy, is one-particle-like excitation spectra, i.e., spectra
characterized by the quantum numbers of a single particle. This includes the low-excitation spectra in
metals as well as configurations in atoms, molecules, and solids with one electron outside or one electron
missing from a closed-shell structure. In the latter cases we obtain an approximate description by a modified
Hartree-Fock equation involving a “Coulomb hole” and a static screened potential in the exchange term. As
an example, spectra of some atoms are discussed. To investigate the convergence of successive approxima-
tions for the Green's function, extensive calculations have been made for the electron gas at arange of metallic
densities. The results are expressed in terms of quasiparticle energies fi(k) and quasiparticle interactions.
J{kk’). The very first approximation gives a good value for the magnitude of % (k). To estimate the deriva-
tive of £ (k) we need hoth the first- and the second-order terms. The derivative, and thus the specific heat, is
found to differ from the free-particle value by only a few percent. Qur correction to the specific heat keeps
the same sign down to the lowest alkali-metal densities, and is smaller than those obtained recently by
Silverstein and by Rice. Our results for the paramagnetic susceptibility are unreliable in the alkali-metal-
density region owing to poor convergence of the expansion for f. Besides the proof of a modified Luttinger-
Ward-Klein variational principle and a related self-consistency idea, there is not much new in principle in
this paper. The emphasis is on the development of a numerically manageable approximation scheme.
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Theory: from Hartree-Fock to GW
Need for screening

A[U] = G[U] or T[U] or £[U]

variations of some operator with respect to a local bare

s n. O0A
perturbation: 7

dU(r) = ed (r-r)

i
o
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Theory: from Hartree-Fock to GW
Need for screening

Purely classical interaction

dU(r) = ed (r-r)

70
<—'—>

e

dV(r) =6U(r) + classical screening

sV(1) :5U(1)—|—/d2v(1,2)5p(2)

the variations of the charge density p tends to oppose to the
perturbation.
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Theory: from Hartree-Fock to GW
Need for screening

We'd better work with G[V], X[V], I'[V], etc.
than with G[U], X[U], T[U], etc.

§G71(1,2)
R
§G7Y(1,2) 5V (4)
- _/d45w® 5U(3)

- _/dﬁi}gf%*mﬁ)

r(1,2;3)

where ¢ is the dielectric function of the medium.
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Theory: from Hartree-Fock to GW
Towards Hedin's equations

Y = iGve T
irreducible vertex
~ §G~1
M = ——
1%
or -
= 1+ —GGI
56
screened Coulomb interaction
W=¢ly
dielectric function
e=1—vy
irreducible polarizability
. Op o
X = SV —iGGT
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Theory: from Hartree-Fock to GW

Hedin's equations

Yy = iGW(SfZ
M= 145661
W = ¢ty

e = 1—vyx

§ = —iGGT
Gl = G'-x

Hedin's wheel @ e
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Theory: from Hartree-Fock to GW

Hedin's equations

Y = iGWF

- 0x

Fo= 1+EGGF £ _ g

_ -1

W = € v F0) _ 1

e = 1—vyx .

¥ = —iGGl ¥ = —iGG = xrea
G! = Gl-% @ = icw

w
Hedin's wheel l I

GW approximation Fabien Bruneval




Theory: from Hartree-Fock to GW

GW for the jellium

Homogeneous electron gas with constant density pg
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Physical content of GW
Outline

© Physical content of GW
@ What does the screening account for?
@ What does the self-energy contain?
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Physical content of GW

From the Coulomb interaction to the screened Coulomb

interaction

Hartree-Fock self-energy GW self-energy

¥(1,2) = iG(L,2)v(1T,2) ¥(1,2) = iG(L,2)W(1T,2)

The only difference is in the v or W
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Physical content of GW

What is different in v and in W

@ W is shorter ranged than v
with a crude model for W in metal:

e—)\TF.|I’1—I’2|
W(ry,r2) = n_n]

@ v is static, whereas W is dynamic
v(ry,ro, t1 — t2) = 0(t1 — t2)m

W(ri,r, ti — )
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Physical content of GW
How does W look like?

W in frequency domain can be calculated and also

measured!
Silicon
087771717 T 7
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v 0.01F \ _
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Energy [eV]

It can be measured by EELS, IXSS.
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Physical content of GW
How does W look like?

In real time:
Macroscopic response to U(1) = ed(r1)d(t1)

Re {W -v}
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Physical content of GW
How does W look like?

In real time:
Macroscopic response to U(1) = ed(r1)d(t1)

AAVA/\/\A
/ vvv

Re {W -v}

10
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Physical content of GW
From Hartree-Fock to GW

The only difference is in the v or W

Coulomb interaction Screened Coulomb interaction

1 1
V(1,2) = 7(5(1‘1—1'2) W(1,2) = /dl’3 (r3, ro, tlftg)

|r1—r2\ !r1—|'3|
GW self-energy
Hartree-Fock self-energy )
Yow(w) = iGW
Y. (#) = iGv = iGv+iG[W —v]
Y+ X (w)

non local
hermitian, static non local

non hermitian, dynamic

— Deep consequences for the spectral function A(w) = |[Im{TrG(w)}|



Physical content of GW
Spectral function

The spectral functions can be calculated

(iIJA)[7) = [Im{i[G(w)|)]
1
B ‘w — hhartreeii — Zii(w) ‘

[Im%;i(w)|
[ — Apartrecii — ReXZji(w)]” + [ImZ;i(w)]?

where Gil-_l = G(;,-l - Z,‘,’
Lorentizian shape:

Centered on the GW QP energy.
Width ImX
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Physical content of GW

From Hartree-Fock to GW
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Physical content of GW

Solution of the quasiparticle equation

Silicon _ Aluminum
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Physical content of GW

Lifetime and GW self-energy

Hole self-energy:

Im{(i|Z(e)|)} = = > My(a+G)M;(a+G)
JjaGG’

x Im(W — v)ge(a, € — €)
X (1 — €j)0(ej — €i)
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GW for realistic materials
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@ GW for realistic materials
@ Implementation
@ Applications
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GW for realistic materials
Schematic GW calculation

Recipe by Hybertsen and Louie, PRL 55 1418 (1985) called
“GoWp" or “best G best W"

DFT
LDA

LDA éDA
(/e

LDA éDA
(U

X=iGW

GW

GW approximation
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GW for realistic materials
GW for realistic materials

Quasiparticle equations

ho(r1) " (r1) +/dr22(r1,r2,6,-GW) W(rp) = e oW (1)

Kohn-Sham equations

ho(r1) 02 (r) + vie(r) o) (1) = 20 (ry)
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GW for realistic materials
GW for realistic materials

Quasiparticle equations

ho(r1) ol (ry) +/dl‘22(|’17f2, eEM)pr3 (1) = efW S (1)

Kohn-Sham equations

ho(r1) 02 (r) + vie(r) o) (1) = 20 (ry)
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GW for realistic materials
GW for realistic materials

Kohn-Sham equations

ho(r1) 02 (r) + vie(r) o) (1) = 20 (ry)

Differences

(SO = vl ofS) = EW — &S
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GW for realistic materials
Go W, calculation
To calculate the GW self-energy:

¥(1,2) = iG(1,2)W(11,2)

which is Fourier transformed into frequencies

Z(rl,rg,w) = i/dw’G(rl,rg,w—i—w’)W(rl,rg,w’)
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GW for realistic materials
Go W, calculation
To calculate the GW self-energy:

¥(1,2) = iG(1,2)W(11,2)

which is Fourier transformed into frequencies
Z(I‘l, I‘Q,w) = i/dw’G(rl, ro,w + w’) W(I‘l7 I’2,w/)

We need the following ingredients:
KS KSs
@ The KS Green's function: G(ry,rp,w) = "; %ﬁ’ilém)

RPA —1

@ The RPA dielectric matrix: g~ (q,w)
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GW for realistic materials
Band gaps of semiconductors
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experimental gap (eV)

from M. van Schilfgaarde et al., PRL 96 226402 (2006).



GW for realistic materials
Result for a complex metal

Nickel

experiment
¢ GW

from F. Aryasetiawan, PRB 46 13051 (1992).



GW for realistic materials
Surfaces

Al(111): potential

0.00 : : —

-0.10 |

-0.20

Energy (a.u.)

——-- Image

-0.30

-0.40 ! ! :
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Distance outside surface (a.u.)

from I.D. White et al, PRL 80, 4265 (1998).
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GW for realistic materials
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