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. .Band structure & calculations

Band structure from one particle approximations

Any one-particle Hamiltonian: h(r)
→ diagonalization
h(r)φi (r) = εiφi (r)
and εi is called the band structure.

HOWEVER, in reality,

H(r1, ..., rN) =
∑

i

−∇i

2

2

+
∑

i

Vnuclei(ri ) +
∑
i<j

1

|ri − rj |

→ ionization or affinity energy
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. .Band structure & calculations

Photoemission spectroscopy

hν

E kin Energy conservation:

Before the experiment
hν + EN,0

After the experiment
Ekin + EN−1,i

hν − Ekin = EN−1,i − EN,0=̂− εi
→ ionization energy or binding energy or valence band structure
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. .Band structure & calculations

Wavefunctions methods

Hartree-Fock method: variationally best Slater determinant

ΦN,0(r1, ..., rN) ∝

∣∣∣∣∣∣∣∣∣
φ1(r1) . . . φN(r1)
φ1(r2) . . . φN(r2)

...
...

φ1(rN) . . . φN(rN)

∣∣∣∣∣∣∣∣∣
made of N one-particle wavefunctions φi .

L = 〈Φ|H|Φ〉 −
∑

i

εHF
i

∫
dr|φi (r)|2

⇒ hHFφi = εHF
i φi

εHF
i obtained as N Lagrange multipliers
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. .Band structure & calculations

Hartree-Fock method

Valence Photoemission:

ΦN−1,i (r1, ..., rN−1) ∝∣∣∣∣∣∣∣∣∣
φ1(r1) . . . φi−1(r1) φi+1(r1) . . . φN(r1)
φ1(r2) . . . φi−1(r2) φi+1(r2) . . . φN(r2)

...
...

φ1(rN−1) . . . φi−1(rN−1) φi+1(rN−1) . . . φN(rN−1)

∣∣∣∣∣∣∣∣∣
Koopmans theorem:

εi = 〈N, 0|H|N, 0〉 − 〈N − 1, i |H|N − 1, i〉

The eigenvalues εi do have a physical meaning
Approximation: No relaxation of the other orbitals
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. .Band structure & calculations

Hartree-Fock results

Atoms

Ionization energy
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. .Band structure & calculations

Hartree-Fock results

Homogeneous electron gas (=jellium) with constant density ρ0
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. .Band structure & calculations

Hartree-Fock results

Band gap of semiconductors and insulators

courtesy of Brice Arnaud, Université de Rennes, France
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. .Band structure & calculations

Density Functional Theory

DFT well assessed for the structure of solids

BUT

L = 〈Φ|HKS|Φ〉 −
∑

i

εKS
i

∫
dr|φKS

i (r)|2

⇒ hKS(r)φKS
i (r) = εKS

i φKS
i (r)

εKS
i obtained as N Lagrange multipliers

Kohn-Sham energies cannot be interpreted as removal/addition
energies
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. .Band structure & calculations

Kohn-Sham

Band gaps of semiconductors and insulators

experimental gap (eV)

adapted from M. van Schilfgaarde et al., PRL 96 226402 (2006)
→ underestimated

GW approximation Fabien Bruneval



. .Band structure & calculations

The solution?

Need for a tool that gives the correct band structure εi
i.e. the correct differences EN,0 − EN±1,i

⇒ Green’s functions
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. .Theory: from Hartree-Fock to GW

Green’s functions: from HF to GW

Review the many-body equations with a functional approach
(Hedin 1965)

Convince you that GW is a natural extension beyond HF

use of zero temperature Green’s function formalism:

iG (1, 2) = 〈N, 0|T
[
ΨH(1)Ψ†

H(2)
]
|N, 0〉

=

{
〈N, 0|ΨH(1)Ψ†

H(2)|N, 0〉 if t1 > t2
−〈N, 0|Ψ†

H(2)ΨH(1)|N, 0〉 if t1 < t2
.
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. .Theory: from Hartree-Fock to GW

Green’s functions: from HF to GW

t1 > t2

〈N, 0|ΨH(1)Ψ†
H(2)|N, 0〉

Ψ†
H(2)|N, 0〉

Ψ†
H(1)|N, 0〉

( r  , t   )

( r  , t   )

2 2

1 1

t1 < t2

〈N, 0|Ψ†
H(2)ΨH(1)|N, 0〉

ΨH(2)|N, 0〉
ΨH(1)|N, 0〉

( r  , t   )

( r  , t   )

2 2

1 1
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. .Theory: from Hartree-Fock to GW

Functional approach to the MB problem

To determine the 1-particle Green’s function

[i
∂

∂t
− h0]G + i

∫
vG2 = 1

where h0 = −1
2∇

2 + vext is the independent particle Hamiltonian.

The 2-particle Green’s function describes the motion of 2 particles.
Unfortunately, a whole hierarchy of equations:

G1(1, 2) ← G2(1, 2; 3, 4)
G2(1, 2; 3, 4) ← G3(1, 2, 3; 4, 5, 6)

...
...

...
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. .Theory: from Hartree-Fock to GW

Self-energy

Perturbation theory starts from what is known to evaluate what is
not known, hoping that the difference is small...
Let’s say we know G0 that corresponds to the Hamiltonian h0

Everything that is unknown is put in

Σ = G−1
0 − G−1

This is the definition of the self-energy
Thus,

[i
∂

∂t
− h0]G −

∫
ΣG = 1

to be compared with

[i
∂

∂t
− h0]G + i

∫
vG2 = 1
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. .Theory: from Hartree-Fock to GW

Functional derivation of the MB problem

Trick due to Schwinger (1951):
introduce a small external potential U(3), that will be made equal
to zero at the end, and calculate the variations of G1 with respect
to U
Self-energy

Σ(1, 2) = −i

∫
d3d4v(1+, 3)G (1, 4)

δG−1(4, 2)

δU(3)

Vertex function

Γ(1, 2; 3) = −δG−1(1, 2)

δU(3)

Dyson equation

G−1(1, 2) = G−1
0 (1, 2)− U(1)δ(1, 2)− Σ(1, 2)
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. .Theory: from Hartree-Fock to GW

Functional definition of the self-energy

Exact equations

G−1 = G−1
0 − Σ

Σ = iGvΓ

Γ = 1 +

[
−iv +

δΣ

δG

]
GGΓ

Γ(0) = 1

Σ(1) = iGv = Σx

→ Hartree Fock approximation

G

v
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. .Theory: from Hartree-Fock to GW

Functional definition of the self-energy

Exact equations

G−1 = G−1
0 − Σ

Σ = iGvΓ

Γ = 1 +

[
−iv +

δΣ

δG

]
GGΓ

Σ(1) = iGv

Γ(1) = 1 + ivGGv + ivGvG

Σ(2) = Σx − GvGGv − GvGvG

→ 2nd order in v
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. .Theory: from Hartree-Fock to GW

GW origins
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. .Theory: from Hartree-Fock to GW

Need for screening

A[U] = G [U] or Γ[U] or Σ[U]

variations of some operator with respect to a local bare
perturbation: δA

δU

δU(r) = e   (r−r )δ 0
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. .Theory: from Hartree-Fock to GW

Need for screening

Purely classical interaction

δU(r) = e   (r−r )δ

V(r) =  U(r) + classical screeningδ δ

0

δV (1) = δU(1) +

∫
d2v(1, 2)δρ(2)

the variations of the charge density δρ tends to oppose to the
perturbation.
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. .Theory: from Hartree-Fock to GW

Need for screening

We’d better work with G [V ], Σ[V ], Γ[V ], etc.
than with G [U], Σ[U], Γ[U], etc.

Γ(1, 2; 3) = −δG−1(1, 2)

δU(3)

= −
∫

d4
δG−1(1, 2)

δV (4)

δV (4)

δU(3)

= −
∫

d4
δG−1(1, 2)

δV (4)
ε−1(4, 3)

where ε is the dielectric function of the medium.
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. .Theory: from Hartree-Fock to GW

Towards Hedin’s equations

Σ = iGvε−1Γ̃

irreducible vertex

Γ̃ = −δG−1

δV

= 1 +
δΣ

δG
GG Γ̃

screened Coulomb interaction

W = ε−1v

dielectric function
ε = 1− v χ̃

irreducible polarizability

χ̃ =
δρ

δV
= −iGG Γ̃
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. .Theory: from Hartree-Fock to GW

Hedin’s equations

Σ = iGW Γ̃

Γ̃ = 1 +
δΣ

δG
GG Γ̃

W = ε−1v

ε = 1− v χ̃

χ̃ = −iGG Γ̃

G−1 = G−1
0 − Σ

Hedin’s wheel

Σ

Γ

W G

χ~ ~

Σ(0) = 0

Γ(1) = 1

χ̃(1) = −iGG = χRPA

Σ(1) = iGW

G

W
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. .Theory: from Hartree-Fock to GW

GW for the jellium

Homogeneous electron gas with constant density ρ0
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. .Physical content of GW
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. .Physical content of GW

From the Coulomb interaction to the screened Coulomb
interaction

Hartree-Fock self-energy

Σ(1, 2) = iG (1, 2)v(1+, 2)

GW self-energy

Σ(1, 2) = iG (1, 2)W (1+, 2)

The only difference is in the v or W
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. .Physical content of GW

What is different in v and in W

W is shorter ranged than v
with a crude model for W in metal:

W (r1, r2) =
e−λTF .|r1−r2|

|r1 − r2|

v is static, whereas W is dynamic

v(r1, r2, t1 − t2) = δ(t1 − t2)
1

|r1 − r2|

W (r1, r2, t1 − t2)

GW approximation Fabien Bruneval



. .Physical content of GW

How does W look like?

W in frequency domain can be calculated and also
measured!

Silicon

It can be measured by EELS, IXSS.
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. .Physical content of GW

How does W look like?

In real time:
Macroscopic response to U(1) = eδ(r1)δ(t1)

-10 0 10
τ (a.u.)

Re
 {

W
 - 

v}
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. .Physical content of GW

From Hartree-Fock to GW

The only difference is in the v or W

Coulomb interaction

v(1, 2) =
1

|r1 − r2|
δ(t1−t2)

Screened Coulomb interaction

W (1, 2) =

∫
dr3

1

|r1 − r3|
ε−1(r3, r2, t1−t2)

Hartree-Fock self-energy

Σx(ω//) = iGv

non local
hermitian, static

GW self-energy

ΣGW (ω) = iGW

= iGv + iG [W − v ]

= Σx + Σc(ω)

non local
non hermitian, dynamic

→ Deep consequences for the spectral function A(ω) = |Im {TrG (ω)}|
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. .Physical content of GW

Spectral function

The spectral functions can be calculated

〈i |A(ω)|i〉 = |Im〈i |G (ω)|i〉|

=

∣∣∣∣ 1

ω − hhartreeii − Σii (ω)

∣∣∣∣
=

|ImΣii (ω)|
[ω − hhartreeii − ReΣii (ω)]2 + [ImΣii (ω)]2

where G−1
ii = G−1

0ii − Σii

Lorentizian shape:
Centered on the GW QP energy.
Width ImΣ
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. .Physical content of GW

From Hartree-Fock to GW

A(ω) = |ImG (ω)|

ω

A
ii

Non-interacting electrons
Interacting electrons

Re Σii

Im Σii

Satellite

Zi
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. .Physical content of GW

Solution of the quasiparticle equation

Silicon
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. .Physical content of GW

Lifetime and GW self-energy

Hole self-energy:

Im{〈i |Σ(εi )|i〉} = −
∑

jqGG′

Mij(q + G)M∗
ij (q + G′)

× Im(W − v)GG′(q, εj − εi )

× θ(µ− εj)θ(εj − εi )

µ

εi
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. .GW for realistic materials

Schematic GW calculation

Recipe by Hybertsen and Louie, PRL 55 1418 (1985) called
“G0W0” or “best G best W ”

φ  , εLDA LDA

DFT
LDA

φ  , εLDA LDA

GLDA

W

Σ= iGW

RPA

εGW
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. .GW for realistic materials

GW for realistic materials

Assumption

φGW
i ≈ φKS

i

Quasiparticle equations

h0(r1)φ
GW
i (r1) +

∫
dr2Σ(r1, r2, ε

GW
i )φGW

i (r2) = εGW
i φGW

i (r1)

Kohn-Sham equations

h0(r1)φ
KS
i (r1) + vxc(r1)φ

KS
i (r1) = εKS

i φKS
i (r1)

Differences

〈φKS
i |Σ(εGW

i )− vxc |φKS
i 〉 = εGW

i − εKS
i
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. .GW for realistic materials

GW for realistic materials
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φGW
i ≈ φKS
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GW
i )φKS
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Differences

〈φKS
i |Σ(εGW

i )− vxc |φKS
i 〉 = εGW

i − εKS
i
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. .GW for realistic materials

G0W0 calculation

To calculate the GW self-energy:

Σ(1, 2) = iG (1, 2)W (1+, 2)

which is Fourier transformed into frequencies

Σ(r1, r2, ω) = i

∫
dω′G (r1, r2, ω + ω′)W (r1, r2, ω

′)

We need the following ingredients:

The KS Green’s function: G (r1, r2, ω) =
∑

i
φKS

i (r1)φKS∗
i (r2)

ω−εKS
i ±iη

The RPA dielectric matrix: εRPA −1
GG′ (q, ω)
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. .GW for realistic materials

Band gaps of semiconductors

experimental gap (eV)

from M. van Schilfgaarde et al., PRL 96 226402 (2006).
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. .GW for realistic materials

Result for a complex metal

Nickel

from F. Aryasetiawan, PRB 46 13051 (1992).
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. .GW for realistic materials

Surfaces

Al(111): potential

from I.D. White et al, PRL 80, 4265 (1998).
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