Electronic Excitations and Spectroscopy: Theory and Codes Introduction to the *GW* approximation

Fabien Bruneval

Service de Recherche de Métallurgie Physique, CEA Saclay, France

December 12, 2007

Outline

- 2 Theory: from Hartree-Fock to *GW*
 - Functional approach to the MB problem
 - Hedin's equations
- O Physical content of GW
 - What does the screening account for?
 - What does the self-energy contain?
- GW for realistic materials
 - Implementation
 - Applications

Outline

1 Band structure & calculations

- Theory: from Hartree-Fock to GW
 Functional approach to the MB problem
 Hedin's equations
 - Physical content of GW
 What does the screening account
 What does the self-energy contai
- GW for realistic materials
 Implementation
 - Applications

Band structure from one particle approximations

Any one-particle Hamiltonian: $h(\mathbf{r})$ \rightarrow diagonalization $h(\mathbf{r})\phi_i(\mathbf{r}) = \epsilon_i\phi_i(\mathbf{r})$ and ϵ_i is called the band structure.

HOWEVER, in reality,

$$\mathcal{H}(\mathbf{r}_1,...,\mathbf{r}_N) = \sum_i -\frac{\nabla_i^2}{2} + \sum_i V_{\text{nuclei}}(\mathbf{r}_i) + \sum_{i < j} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}$$

 \rightarrow ionization or affinity energy

Photoemission spectroscopy

Energy conservation:

- Before the experiment $h\nu + E_{N,0}$
- After the experiment $E_{kin} + E_{N-1,i}$

 $h\nu - E_{kin} = E_{N-1,i} - E_{N,0} = -\epsilon_i$ \rightarrow ionization energy or binding energy or valence band structure

Wavefunctions methods

Hartree-Fock method: variationally best Slater determinant

$$\Phi_{N,0}(\mathbf{r}_1,...,\mathbf{r}_N) \propto \begin{vmatrix} \phi_1(\mathbf{r}_1) & \dots & \phi_N(\mathbf{r}_1) \\ \phi_1(\mathbf{r}_2) & \dots & \phi_N(\mathbf{r}_2) \\ \vdots & & \vdots \\ \phi_1(\mathbf{r}_N) & \dots & \phi_N(\mathbf{r}_N) \end{vmatrix}$$

made of N one-particle wavefunctions ϕ_i .

$$egin{aligned} \mathcal{L} &= \langle \Phi | \mathcal{H} | \Phi
angle - \sum_i \epsilon^{\mathsf{HF}}_i \int d\mathbf{r} | \phi_i(\mathbf{r}) |^2 \ &\Rightarrow h^{\mathsf{HF}} \phi_i = \epsilon^{\mathsf{HF}}_i \phi_i \end{aligned}$$

 ϵ_i^{HF} obtained as N Lagrange multipliers

Hartree-Fock method

Valence Photoemission:

$$\Phi_{N-1,i}(\mathbf{r}_1,...,\mathbf{r}_{N-1}) \propto \begin{vmatrix} \phi_1(\mathbf{r}_1) & \dots & \phi_{i-1}(\mathbf{r}_1) & \phi_{i+1}(\mathbf{r}_1) & \dots & \phi_N(\mathbf{r}_1) \\ \phi_1(\mathbf{r}_2) & \dots & \phi_{i-1}(\mathbf{r}_2) & \phi_{i+1}(\mathbf{r}_2) & \dots & \phi_N(\mathbf{r}_2) \\ \vdots & \vdots & \vdots & & \\ \phi_1(\mathbf{r}_{N-1}) & \dots & \phi_{i-1}(\mathbf{r}_{N-1}) & \phi_{i+1}(\mathbf{r}_{N-1}) & \dots & \phi_N(\mathbf{r}_{N-1}) \end{vmatrix}$$

Koopmans theorem:

$$\epsilon_i = \langle N, 0 | \mathcal{H} | N, 0 \rangle - \langle N - 1, i | \mathcal{H} | N - 1, i \rangle$$

The eigenvalues ϵ_i do have a physical meaning Approximation: **No relaxation** of the other orbitals

Hartree-Fock results

Ionization energy

calculated as the energy of the HOMO with gaussian 03

Hartree-Fock results

Homogeneous electron gas (=jellium) with constant density ρ_0

GW approximation

Fabien Bruneval

Band structure & calculations

Hartree-Fock results

Band gap of semiconductors and insulators

courtesy of Brice Arnaud, Université de Rennes, France

Density Functional Theory

DFT well assessed for the structure of solids

BUT

$$\begin{aligned} \mathcal{L} &= \langle \Phi | \mathcal{H}^{\mathsf{KS}} | \Phi \rangle - \sum_{i} \epsilon_{i}^{\mathsf{KS}} \int d\mathbf{r} | \phi_{i}^{\mathsf{KS}}(\mathbf{r}) |^{2} \\ &\Rightarrow h^{\mathsf{KS}}(\mathbf{r}) \phi_{i}^{\mathsf{KS}}(\mathbf{r}) = \epsilon_{i}^{\mathsf{KS}} \phi_{i}^{\mathsf{KS}}(\mathbf{r}) \end{aligned}$$

 $\epsilon_i^{\rm KS}$ obtained as N Lagrange multipliers Kohn-Sham energies cannot be interpreted as removal/addition energies

Band structure & calculations

Kohn-Sham

Band gaps of semiconductors and insulators

GW approximation

The solution?

Need for a tool that gives the **correct** band structure ϵ_i i.e. the **correct** differences $E_{N,0} - E_{N\pm 1,i}$

 \Rightarrow Green's functions

Theory: from Hartree-Fock to *GW*Outline

Band structure & calculations

- Theory: from Hartree-Fock to GW
 Functional approach to the MB problem
 Hedin's equations
- 3 Physical content of GW
 - What does the screening account for?
 - What does the self-energy contain?
- *GW* for realistic materials
 Implementation
 - Applications

Green's functions: from HF to GW

- Review the many-body equations with a functional approach (Hedin 1965)
- \bullet Convince you that GW is a natural extension beyond HF

use of zero temperature Green's function formalism:

$$iG(1,2) = \langle N,0|T\left[\Psi_{H}(1)\Psi_{H}^{\dagger}(2)\right]|N,0\rangle$$

=
$$\begin{cases} \langle N,0|\Psi_{H}(1)\Psi_{H}^{\dagger}(2)|N,0\rangle & \text{if } t_{1} > t_{2} \\ -\langle N,0|\Psi_{H}^{\dagger}(2)\Psi_{H}(1)|N,0\rangle & \text{if } t_{1} < t_{2} \end{cases}$$

Green's functions: from HF to GW

$$t_1 > t_2$$

 $\langle N, 0 | \Psi_H(1) \Psi_H^{\dagger}(2) | N, 0
angle$

 $|\Psi_{H}^{\dagger}(2)|N,0
angle \ \Psi_{H}^{\dagger}(1)|N,0
angle$

 $t_1 < t_2$ $\langle N, 0 | \Psi_H^{\dagger}(2) \Psi_H(1) | N, 0
angle$

 $\Psi_H(2)|N,0
angle$ $\Psi_H(1)|N,0
angle$

Functional approach to the MB problem

To determine the 1-particle Green's function

$$[i\frac{\partial}{\partial t}-h_0]G+i\int vG_2=1$$

where $h_0 = -\frac{1}{2}\nabla^2 + v_{ext}$ is the independent particle Hamiltonian.

The 2-particle Green's function describes the motion of 2 particles. Unfortunately, a whole hierarchy of equations:

$$egin{array}{rcl} G_1(1,2) &\leftarrow & G_2(1,2;3,4) \ G_2(1,2;3,4) &\leftarrow & G_3(1,2,3;4,5,6) \ dots &dots &$$

Self-energy

Perturbation theory starts from what is known to evaluate what is not known, hoping that the difference is small...

Let's say we know G_0 that corresponds to the Hamiltonian h_0 Everything that is unknown is put in

$$\Sigma = G_0^{-1} - G^{-1}$$

This is the definition of the self-energy Thus,

$$[i\frac{\partial}{\partial t}-h_0]G-\int \Sigma G=1$$

to be compared with

$$[i\frac{\partial}{\partial t} - h_0]G + i\int vG_2 = 1$$

Functional derivation of the MB problem

Trick due to Schwinger (1951):

introduce a small external potential U(3), that will be made equal to zero at the end, and calculate the variations of G_1 with respect to U

Self-energy

$$\Sigma(1,2) = -i \int d3d4v(1^+,3)G(1,4) \frac{\delta G^{-1}(4,2)}{\delta U(3)}$$

Vertex function

$$\Gamma(1,2;3) = -rac{\delta G^{-1}(1,2)}{\delta U(3)}$$

Dyson equation

$$G^{-1}(1,2) = G_0^{-1}(1,2) - U(1)\delta(1,2) - \Sigma(1,2)$$

Functional definition of the self-energy

Exact equations

$$G^{-1} = G_0^{-1} - \Sigma$$
$$\Sigma = iGv\Gamma$$
$$= 1 + \left[-iv + \frac{\delta\Sigma}{\delta G}\right]GG\Gamma$$

$$\Gamma^{(0)}=1$$

$$\Sigma^{(1)} = iGv = \Sigma_x$$

 \rightarrow Hartree Fock approximation

Functional definition of the self-energy

Exact equations

$$G^{-1} = G_0^{-1} - \Sigma$$

 $\Sigma = iGv\Gamma$
 $\Gamma = 1 + \left[-iv + rac{\delta\Sigma}{\delta G}
ight] GG\Gamma$

$$\Sigma^{(1)} = iGv$$

$$\Gamma^{(1)} = 1 + ivGGv + ivGvG$$

$$\Sigma^{(2)} = \Sigma_x - GvGGv - GvGvG$$

 \rightarrow 2nd order in v

GW approximation

PHYSICAL REVIEW

VOLUME 139, NUMBER 3A

2 AUGUST 1965

New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem*

LARS HEDINT

Argonne National Laboratory, Argonne, Illinois (Received 8 October 1964; revised manuscript received 2 April 1965)

A set of successively more accurate self-consistent equations for the one-electron Green's function have been derived. They correspond to an expansion in a screened potential rather than the bare Coulomb potential. The first equation is adequate for many purposes. Each equation follows from the demand that a corresponding expression for the total energy be stationary with respect to variations in the Green's function. The main information to be obtained, besides the total energy, is one-particle-like excitation spectra, i.e., spectra characterized by the quantum numbers of a single particle. This includes the low-excitation spectra in metals as well as configurations in atoms, molecules, and solids with one electron outside or one electron missing from a closed-shell structure. In the latter cases we obtain an approximate description by a modified Hartree-Fock equation involving a "Coulomb hole" and a static screened potential in the exchange term. As an example, spectra of some atoms are discussed. To investigate the convergence of successive approximations for the Green's function, extensive calculations have been made for the electron gas at a range of metallic densities. The results are expressed in terms of quasiparticle energies $E(\mathbf{k})$ and quasiparticle interactions $f(\mathbf{k},\mathbf{k}')$. The very first approximation gives a good value for the magnitude of $E(\mathbf{k})$. To estimate the derivative of $E(\mathbf{k})$ we need both the first- and the second-order terms. The derivative, and thus the specific heat, is found to differ from the free-particle value by only a few percent. Our correction to the specific heat keeps the same sign down to the lowest alkali-metal densities, and is smaller than those obtained recently by Silverstein and by Rice. Our results for the paramagnetic susceptibility are unreliable in the alkali-metaldensity region owing to poor convergence of the expansion for f. Besides the proof of a modified Luttinger-Ward-Klein variational principle and a related self-consistency idea, there is not much new in principle in this paper. The emphasis is on the development of a numerically manageable approximation scheme.

Need for screening

A[U] = G[U] or $\Gamma[U]$ or $\Sigma[U]$

variations of some operator with respect to a local bare perturbation: $\frac{\delta A}{\delta U}$

Need for screening

Purely classical interaction

the variations of the charge density $\delta\rho$ tends to oppose to the perturbation.

Need for screening

We'd better work with G[V], $\Sigma[V]$, $\Gamma[V]$, etc. than with G[U], $\Sigma[U]$, $\Gamma[U]$, etc.

$$\Gamma(1,2;3) = -\frac{\delta G^{-1}(1,2)}{\delta U(3)}$$

= $-\int d4 \frac{\delta G^{-1}(1,2)}{\delta V(4)} \frac{\delta V(4)}{\delta U(3)}$
= $-\int d4 \frac{\delta G^{-1}(1,2)}{\delta V(4)} \varepsilon^{-1}(4,3)$

where ε is the dielectric function of the medium.

Towards Hedin's equations

$$\Sigma = i G v \varepsilon^{-1} \tilde{\Gamma}$$

irreducible vertex

$$\begin{aligned} \frac{\delta G^{-1}}{\delta V} &= -\frac{\delta G^{-1}}{\delta V} \\ &= 1 + \frac{\delta \Sigma}{\delta G} G G \tilde{\Gamma} \end{aligned}$$

Î

screened Coulomb interaction

$$W = \epsilon^{-1} v$$

dielectric function

$$\epsilon = 1 - v \tilde{\chi}$$

irreducible polarizability

$$ilde{\chi} = rac{\delta
ho}{\delta V} = -i G G ilde{\Gamma}$$

Hedin's equations

$$\Sigma = iGW\tilde{\Gamma}$$

$$\tilde{\Gamma} = 1 + \frac{\delta\Sigma}{\delta G}GG\tilde{\Gamma}$$

$$W = \epsilon^{-1}v$$

$$\epsilon = 1 - v\tilde{\chi}$$

$$\tilde{\chi} = -iGG\tilde{\Gamma}$$

$$G^{-1} = G_0^{-1} - \Sigma$$

$$\tilde{\chi}$$
 $\tilde{\Gamma}$

GW approximation

 $\Sigma^{(0)} = 0$ $\Gamma^{(1)} = 1$ $\tilde{\chi}^{(1)} = -iGG = \chi_{\text{RPA}}$ $\Sigma^{(1)} = iGW$ W
G

Hedin's equations

$$\Sigma = iGW\tilde{\Gamma}$$

$$\tilde{\Gamma} = 1 + \frac{\delta\Sigma}{\delta G}GG\tilde{\Gamma}$$

$$W = \epsilon^{-1}v$$

$$\epsilon = 1 - v\tilde{\chi}$$

$$\tilde{\chi} = -iGG\tilde{\Gamma}$$

$$G^{-1} = G_0^{-1} - \Sigma$$

$$wheel$$

$$\tilde{\chi} = \tilde{\chi}$$

1 J

$$\Sigma^{(0)} = 0$$

$$\Gamma^{(1)} = 1$$

$$\tilde{\chi}^{(1)} = -iGG = \chi_{\text{RPA}}$$

$$\Sigma^{(1)} = iGW$$
W
G

Hedin's wheel GW approximation

Theory: from Hartree-Fock to GWGW for the jellium

Homogeneous electron gas with constant density ρ_0

Outline

Band structure & calculations

- Theory: from Hartree-Fock to GW
 Functional approach to the MB problem
 Hedin's equations
- 3 Physical content of GW
 - What does the screening account for?
 - What does the self-energy contain?
- GW for realistic materials
 Implementation
 Applications
 - Applications

From the Coulomb interaction to the screened Coulomb interaction

Hartree-Fock self-energy

GW self-energy

 $\Sigma(1,2) = iG(1,2)v(1^+,2)$

 $\Sigma(1,2) = iG(1,2)W(1^+,2)$

The only difference is in the v or W

What is different in v and in W

• W is shorter ranged than v with a crude model for W in metal:

$$W(\mathbf{r}_1,\mathbf{r}_2) = \frac{e^{-\lambda_{TF}.|\mathbf{r}_1-\mathbf{r}_2|}}{|\mathbf{r}_1-\mathbf{r}_2|}$$

• v is static, whereas W is dynamic

$$v(\mathbf{r}_1, \mathbf{r}_2, t_1 - t_2) = \delta(t_1 - t_2) \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|}$$
$$W(\mathbf{r}_1, \mathbf{r}_2, t_1 - t_2)$$

How does W look like?

W in frequency domain can be calculated and also measured!

Silicon

GW approximation

How does W look like?

In real time: Macroscopic response to $U(1) = e\delta(\mathbf{r}_1)\delta(t_1)$

How does W look like?

In real time: Macroscopic response to $U(1) = e\delta(\mathbf{r}_1)\delta(t_1)$

From Hartree-Fock to GW

The only difference is in the v or W

Coulomb interaction

Screened Coulomb interaction

$$v(1,2) = \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} \delta(t_1 - t_2) \qquad W(1,2) = \int d\mathbf{r}_3 \frac{1}{|\mathbf{r}_1 - \mathbf{r}_3|} \epsilon^{-1}(\mathbf{r}_3, \mathbf{r}_2, t_1 - t_2)$$

GW self-energy

Hartree-Fock self-energy

$$\Sigma_{x}(\cancel{\psi}) = iGv$$

$$\begin{split} \Sigma_{GW}(\omega) &= iGW \\ &= iGv + iG \left[W - v\right] \\ &= \Sigma_x + \Sigma_c(\omega) \end{split}$$

non local hermitian, static

non local non hermitian, dynamic

ightarrow Deep consequences for the spectral function $A(\omega) = |\text{Im} \{\text{Tr}G(\omega)\}|$

Spectral function

The spectral functions can be calculated

$$\begin{aligned} \langle i|A(\omega)|i\rangle &= |\mathrm{Im}\langle i|G(\omega)|i\rangle| \\ &= \left|\frac{1}{\omega - h_{\mathrm{hartree}ii} - \Sigma_{ii}(\omega)}\right| \\ &= \frac{|\mathrm{Im}\Sigma_{ii}(\omega)|}{\left[\omega - h_{\mathrm{hartree}ii} - \mathrm{Re}\Sigma_{ii}(\omega)\right]^{2} + \left[\mathrm{Im}\Sigma_{ii}(\omega)\right]^{2} \end{aligned}$$

where $G_{ii}^{-1} = G_{0ii}^{-1} - \Sigma_{ii}$ Lorentizian shape: Centered on the *GW* QP energy. Width Im Σ

From Hartree-Fock to GW

$$A(\omega) = |\mathrm{Im}\,G(\omega)|$$

Solution of the quasiparticle equation

Lifetime and *GW* self-energy

Hole self-energy:

$$\begin{split} \mathsf{Im}\{\langle i|\Sigma(\epsilon_i)|i\rangle\} &= -\sum_{j \in \mathbf{GG}'} M_{ij}(\mathbf{q} + \mathbf{G}) M_{ij}^*(\mathbf{q} + \mathbf{G}') \\ &\times \mathsf{Im}(W - v)_{\mathbf{GG}'}(\mathbf{q}, \epsilon_j - \epsilon_i) \\ &\times \theta(\mu - \epsilon_j)\theta(\epsilon_j - \epsilon_i) \end{split}$$

Outline

Band structure & calculations

- Theory: from Hartree-Fock to GW
 Functional approach to the MB problem
 Hedin's equations
- Physical content of GW
 What does the screening account fo
 What does the self-energy contain?
- GW for realistic materials
 - Implementation
 - Applications

Schematic GW calculation

Recipe by Hybertsen and Louie, PRL **55** 1418 (1985) called " $G_0 W_0$ " or "best *G* best *W*"

GW for realistic materials

Assumption

$\phi_i^{GW} \approx \phi_i^{\rm KS}$

Quasiparticle equations

$$h_0(\mathbf{r}_1)\phi_i^{GW}(\mathbf{r}_1) + \int d\mathbf{r}_2 \Sigma(\mathbf{r}_1, \mathbf{r}_2, \epsilon_i^{GW})\phi_i^{GW}(\mathbf{r}_2) = \epsilon_i^{GW}\phi_i^{GW}(\mathbf{r}_1)$$

Kohn-Sham equations

$$h_0(\mathbf{r}_1)\phi_i^{\mathsf{KS}}(\mathbf{r}_1) + v_{xc}(\mathbf{r}_1)\phi_i^{\mathsf{KS}}(\mathbf{r}_1) = \epsilon_i^{\mathsf{KS}}\phi_i^{\mathsf{KS}}(\mathbf{r}_1)$$

Differences

$$\langle \phi_i^{\mathsf{KS}} | \Sigma(\epsilon_i^{\mathsf{GW}}) - v_{\mathsf{xc}} | \phi_i^{\mathsf{KS}} \rangle = \epsilon_i^{\mathsf{GW}} - \epsilon_i^{\mathsf{KS}}$$

GW for realistic materials

Assumption

$$\phi_i^{GW} \approx \phi_i^{KS}$$

Quasiparticle equations

$$h_0(\mathbf{r}_1)\phi_i^{\mathsf{KS}}(\mathbf{r}_1) + \int d\mathbf{r}_2 \Sigma(\mathbf{r}_1, \mathbf{r}_2, \epsilon_i^{\mathsf{GW}})\phi_i^{\mathsf{KS}}(\mathbf{r}_2) = \epsilon_i^{\mathsf{GW}}\phi_i^{\mathsf{KS}}(\mathbf{r}_1)$$

Kohn-Sham equations

$$h_0(\mathbf{r}_1)\phi_i^{\mathrm{KS}}(\mathbf{r}_1) + v_{xc}(\mathbf{r}_1)\phi_i^{\mathrm{KS}}(\mathbf{r}_1) = \epsilon_i^{\mathrm{KS}}\phi_i^{\mathrm{KS}}(\mathbf{r}_1)$$

Differences

$$\langle \phi_i^{\mathsf{KS}} | \Sigma(\epsilon_i^{\mathsf{GW}}) - v_{\mathsf{xc}} | \phi_i^{\mathsf{KS}} \rangle = \epsilon_i^{\mathsf{GW}} - \epsilon_i^{\mathsf{KS}}$$

Fabien Bruneval

GW for realistic materials

Assumption

$$\phi_i^{GW} \approx \phi_i^{KS}$$

Quasiparticle equations

$$h_0(\mathbf{r}_1)\phi_i^{\mathsf{KS}}(\mathbf{r}_1) + \int d\mathbf{r}_2 \Sigma(\mathbf{r}_1, \mathbf{r}_2, \epsilon_i^{\mathsf{GW}})\phi_i^{\mathsf{KS}}(\mathbf{r}_2) = \epsilon_i^{\mathsf{GW}}\phi_i^{\mathsf{KS}}(\mathbf{r}_1)$$

Kohn-Sham equations

$$h_0(\mathbf{r}_1)\phi_i^{\mathsf{KS}}(\mathbf{r}_1) + v_{xc}(\mathbf{r}_1)\phi_i^{\mathsf{KS}}(\mathbf{r}_1) = \epsilon_i^{\mathsf{KS}}\phi_i^{\mathsf{KS}}(\mathbf{r}_1)$$

Differences

$$\langle \phi_i^{\mathsf{KS}} | \Sigma(\epsilon_i^{\mathsf{GW}}) - v_{\mathsf{xc}} | \phi_i^{\mathsf{KS}} \rangle = \epsilon_i^{\mathsf{GW}} - \epsilon_i^{\mathsf{KS}}$$

GW approximation

Fabien Bruneval

$G_0 W_0$ calculation

To calculate the GW self-energy:

$$\Sigma(1,2) = iG(1,2)W(1^+,2)$$

which is Fourier transformed into frequencies

$$\Sigma(\mathbf{r}_1,\mathbf{r}_2,\omega) = i \int d\omega' G(\mathbf{r}_1,\mathbf{r}_2,\omega+\omega') W(\mathbf{r}_1,\mathbf{r}_2,\omega')$$

We need the following ingredients:

- The KS Green's function: $G(\mathbf{r}_1, \mathbf{r}_2, \omega) = \sum_i \frac{\phi_i^{\text{KS}}(\mathbf{r}_1)\phi_i^{\text{KS}*}(\mathbf{r}_2)}{\omega \epsilon_i^{\text{KS}} \pm in}$
- The RPA dielectric matrix: $\varepsilon_{\mathbf{GG'}}^{\mathrm{RPA}} {}^{-1}(\mathbf{q}, \omega)$

$G_0 W_0$ calculation

To calculate the GW self-energy:

$$\Sigma(1,2) = iG(1,2)W(1^+,2)$$

which is Fourier transformed into frequencies

$$\Sigma(\mathbf{r}_1,\mathbf{r}_2,\omega) = i \int d\omega' G(\mathbf{r}_1,\mathbf{r}_2,\omega+\omega') W(\mathbf{r}_1,\mathbf{r}_2,\omega')$$

We need the following ingredients:

- The KS Green's function: $G(\mathbf{r}_1, \mathbf{r}_2, \omega) = \sum_i \frac{\phi_i^{\text{KS}}(\mathbf{r}_1)\phi_i^{\text{KS}*}(\mathbf{r}_2)}{\omega \epsilon_i^{\text{KS}} \pm i\eta}$
- The RPA dielectric matrix: $\varepsilon_{\mathbf{GG'}}^{\mathrm{RPA}\ -1}(\mathbf{q},\omega)$

Band gaps of semiconductors

from M. van Schilfgaarde et al., PRL 96 226402 (2006).

Result for a complex metal

Nickel

from F. Aryasetiawan, PRB 46 13051 (1992).

Surfaces

Al(111): potential

from I.D. White et al, PRL 80, 4265 (1998).

References

- L. Hedin, Phys. Rev. 139 A796 (1965).
- L. Hedin and S. Lunqdvist, in *Solid State Physics*, Vol. **23** (Academic, New York, 1969), p. 1.
- F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. **61** 237 (1998).
- W.G. Aulbur, L. Jonsson, and J.W. Wilkins, Sol. State Phys. **54** 1 (2000).
- G. Strinati, Riv. Nuovo Cimento 11 1 (1988).
- www.abinit.org
- theory.polytechnique.fr/people/bruneval/